#!/usr/bin/env python3 ### Readme ################################################################### # name: sprite-optimizer # version: 1.1 # author: Dark-Storm # license: CeCILL v2.1 # # comments: # lines are stored as arrays of pixels ############################################################################## from argparse import ArgumentParser from bresenham import bresenham from PIL import Image, ImageDraw from random import randint import sys from time import time rand = lambda: randint(0,200) progress = False def print_stats(img): """Print number and percentage of black pixels""" pixels = img.getdata() count = sum([1 for i in pixels if i == 0]) if progress: print("{} black pixels over {} ({:.1%})".format(count, len(pixels), count/len(pixels))) def get_lines(img): """Generate all potential lines the image contains""" lines = set() lines_uniq = set() pixels = {(x, y) for x in range(img.width) for y in range(img.height) if img.getpixel((x, y)) == 0} i, n = 0, len(pixels) * len(pixels) if progress: print("Get lines:", end = "") # for each pair of pixels, get the line for a in pixels: for b in pixels: line = tuple(bresenham(*a, *b)) line_uniq = tuple(sorted(line)) # if image contains the line, put it on the array if set(line).issubset(pixels) and line_uniq not in lines_uniq: lines.add(line) lines_uniq.add(line_uniq) i += 1 if progress: print("\rGet lines: {:.1%}".format(i / n), end = "") if progress: print("\rGet lines: complete") print("{} lines found".format(len(lines))) return list(lines) def removing_useless(lines): """Remove lines that are sub-lines of other ones""" results = [] n = len(lines) if progress: print("Remove useless lines:", end = "") # for each line, see if there is a line that contains every pixel of it lines_set = [ set(l) for l in lines ] for i, l in enumerate(lines_set): inclusions = 0 # others are all lines that are not l for j, k in enumerate(lines_set): if i == j: continue if l.issubset(k): inclusions += 1 break # or len(l) == 1 : we keep single pixels to complete the image if necessary # TODO: do some tests to see if it's worth or not if inclusions == 0 or len(l) == 1: results.append((len(l), lines[i], l)) if progress: print("\rRemove useless lines: {:.1%}".format(i / n), end = "") if progress: print("\rRemove useless lines: complete") if progress: print("{} lines kept".format(len(results))) return results def get_best_solution(img, lines): """Compute an optimized solution. The magic part of the algorithm""" px_left = {(x, y) for x in range(img.width) for y in range(img.height) if img.getpixel((x, y)) == 0} results = [] n = len(px_left) if progress: print("Draw:", end = "") # while the entier image has not been drown while px_left: # define the length of lines lines = [(len(l_set.intersection(px_left)) - len(l)/(2*max(img.size)), l, l_set) for n, l, l_set in lines] # sort them by length lines = sorted(lines) # pop the longest (p, line, line_set) = lines.pop() # define the pixels that are not covered by any lines px_left = px_left.difference(line_set) results.append((line[0], line[-1])) if progress: print("\rDraw: {:.0%}".format(1 - len(px_left)/n), end="") if progress: print("\rDraw: complete") if progress: print("Solution found in {} lines".format(len(results))) return results def generate_code(lines, args): """Generate Basic Casio code""" str_x, str_y = "{", "{" # Casio's bresenham is reversed compared to classic ones # so we need to reverse the ends of the lines for (x_end, y_end), (x_start, y_start) in lines: x_start, y_start = x_start + int(args.offset[0]), y_start + int(args.offset[1]) x_end, y_end = x_end + int(args.offset[0]), y_end + int(args.offset[1]) str_x += "{}, ".format(get_coord(x_start, x_end)) str_y += "{}, ".format(get_coord(y_start, y_end)) str_x = str_x[:-2] + "}" str_y = str_y[:-2] + "}" code = "Graph(X,Y)=({}, {})".format(str_x, str_y) return code def generate_raw(lines, args): """Generate raw line coordinates""" ox, oy = int(args.offset[0]), int(args.offset[1]) code = "" for (x_end, y_end), (x_start, y_start) in lines: code += f"{x_start} {y_start} {x_end} {y_end}\n" return code # From Zezeombye's BIDE def get_coord(start, end): """Convert a pair of coordonates to the appropriate x+yT Multi DrawStat output""" result = ""; if start != 0: result += str(start) delta = end - start if delta != 0: if delta > 0 and start != 0: result += "+"; if delta < 0: result += "-"; if delta != 1 and delta != -1: result += str(abs(delta)) result += "T"; if len(result) == 0: result = "0" return result; if __name__ == "__main__": start = time() parser = ArgumentParser(description='Generate the Multi DrawStat code for an image.') parser.add_argument('path', type=str, help='path of the image to process') parser.add_argument('-e', '--export', nargs=1, help='export the code into ') parser.add_argument('-o', '--offset', nargs=2, default=(0, 0), help='offset for viewwindow. Default: (0, 0)') parser.add_argument('-f', '--flip', action='store_true', help='flip image vertically (for inverted ViewWindow)') parser.add_argument('-i', '--info', action='store_true', help='print informative stats') parser.add_argument('-p', '--progress', action='store_true', help='print progress info') parser.add_argument('-s', '--show', action='store_true', help='show the result') parser.add_argument('-d', '--draw', action='store_true', help='draw the result into a new file') parser.add_argument('-r', '--raw', action='store_true', help='print raw line coordinates') args = parser.parse_args() progress = args.progress try: image = Image.open(args.path) except: sys.exit("Error! Unable to open file.") try: image = image.convert('1') except: sys.exit("Error! Unable to convert to 1bit") if args.flip: image = image.transpose(Image.FLIP_TOP_BOTTOM) if args.info: print_stats(image) lines = get_lines(image) lines = removing_useless(lines) lines = get_best_solution(image, lines) if args.raw: code = generate_raw(lines, args) else: code = generate_code(lines, args) if args.draw or args.show: export = Image.new('RGB', image.size, 'white') drawer = ImageDraw.Draw(export) for ((a, b), (c, d)) in reversed(lines): drawer.line((a, b, c, d), fill=(rand(), rand(), rand())) export = export.resize((export.width * 8, export.height * 8)) if args.draw: export.save(args.path[:-4] + "_gen.png") if args.show: export.show() if args.info: print("{} processed in {} lines ({:.3}s)".format(args.path, len(lines), time() - start)) if args.export: try: f = open(args.export[0], 'w') f.write(code) f.close() print("Code saved into", args.export[0]) except Exception as e: sys.exit("Error: " + str(e)) print(code)