/* $OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* expm1l.c * * Exponential function, minus 1 * 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, expm1l(); * * y = expm1l( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power, minus one. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35 * */ #include #include #include "math_private.h" /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) -.5 ln 2 < x < .5 ln 2 Theoretical peak relative error = 8.1e-36 */ static const long double P0 = 2.943520915569954073888921213330863757240E8L, P1 = -5.722847283900608941516165725053359168840E7L, P2 = 8.944630806357575461578107295909719817253E6L, P3 = -7.212432713558031519943281748462837065308E5L, P4 = 4.578962475841642634225390068461943438441E4L, P5 = -1.716772506388927649032068540558788106762E3L, P6 = 4.401308817383362136048032038528753151144E1L, P7 = -4.888737542888633647784737721812546636240E-1L, Q0 = 1.766112549341972444333352727998584753865E9L, Q1 = -7.848989743695296475743081255027098295771E8L, Q2 = 1.615869009634292424463780387327037251069E8L, Q3 = -2.019684072836541751428967854947019415698E7L, Q4 = 1.682912729190313538934190635536631941751E6L, Q5 = -9.615511549171441430850103489315371768998E4L, Q6 = 3.697714952261803935521187272204485251835E3L, Q7 = -8.802340681794263968892934703309274564037E1L, /* Q8 = 1.000000000000000000000000000000000000000E0 */ /* C1 + C2 = ln 2 */ C1 = 6.93145751953125E-1L, C2 = 1.428606820309417232121458176568075500134E-6L, /* ln (2^16384 * (1 - 2^-113)) */ maxlog = 1.1356523406294143949491931077970764891253E4L, /* ln 2^-114 */ minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L; long double expm1l(long double x) { long double px, qx, xx; int32_t ix, sign; ieee_quad_shape_type u; int k; /* Detect infinity and NaN. */ u.value = x; ix = u.parts32.mswhi; sign = ix & 0x80000000; ix &= 0x7fffffff; if (ix >= 0x7fff0000) { /* Infinity. */ if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0) { if (sign) return -1.0L; else return x; } /* NaN. No invalid exception. */ return x; } /* expm1(+- 0) = +- 0. */ if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0) return x; /* Overflow. */ if (x > maxlog) return (big * big); /* Minimum value. */ if (x < minarg) return (4.0/big - 1.0L); /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ xx = C1 + C2; /* ln 2. */ px = floorl (0.5 + x / xx); k = px; /* remainder times ln 2 */ x -= px * C1; x -= px * C2; /* Approximate exp(remainder ln 2). */ px = (((((((P7 * x + P6) * x + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; qx = (((((((x + Q7) * x + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; xx = x * x; qx = x + (0.5 * xx + xx * px / qx); /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). We have qx = exp(remainder ln 2) - 1, so exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ px = ldexpl (1.0L, k); x = px * qx + (px - 1.0); return x; }