/* $OpenBSD: s_log1pl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $ */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* log1pl.c * * Relative error logarithm * Natural logarithm of 1+x, long double precision * * * * SYNOPSIS: * * long double x, y, log1pl(); * * y = log1pl( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of 1+x. * * The argument 1+x is separated into its exponent and fractional * parts. If the exponent is between -1 and +1, the logarithm * of the fraction is approximated by * * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). * * Otherwise, setting z = 2(x-1)/x+1), * * log(x) = z + z^3 P(z)/Q(z). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20 * * ERROR MESSAGES: * * log singularity: x-1 = 0; returns -INFINITY * log domain: x-1 < 0; returns NAN */ #include #include "math_private.h" /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 2.32e-20 */ static long double P[] = { 4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L, 6.5787325942061044846969E0L, 2.9911919328553073277375E1L, 6.0949667980987787057556E1L, 5.7112963590585538103336E1L, 2.0039553499201281259648E1L, }; static long double Q[] = { /* 1.0000000000000000000000E0,*/ 1.5062909083469192043167E1L, 8.3047565967967209469434E1L, 2.2176239823732856465394E2L, 3.0909872225312059774938E2L, 2.1642788614495947685003E2L, 6.0118660497603843919306E1L, }; /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 6.16e-22 */ static long double R[4] = { 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L, 1.0777257190312272158094E1L, -3.5717684488096787370998E1L, }; static long double S[4] = { /* 1.00000000000000000000E0L,*/ -2.6201045551331104417768E1L, 1.9361891836232102174846E2L, -4.2861221385716144629696E2L, }; static const long double C1 = 6.9314575195312500000000E-1L; static const long double C2 = 1.4286068203094172321215E-6L; #define SQRTH 0.70710678118654752440L long double log1pl(long double xm1) { long double x, y, z; int e; if( isnan(xm1) ) return(xm1); if( xm1 == INFINITY ) return(xm1); if(xm1 == 0.0) return(xm1); x = xm1 + 1.0L; /* Test for domain errors. */ if( x <= 0.0L ) { if( x == 0.0L ) return( -INFINITY ); else return( NAN ); } /* Separate mantissa from exponent. Use frexp so that denormal numbers will be handled properly. */ x = frexpl( x, &e ); /* logarithm using log(x) = z + z^3 P(z)/Q(z), where z = 2(x-1)/x+1) */ if( (e > 2) || (e < -2) ) { if( x < SQRTH ) { /* 2( 2x-1 )/( 2x+1 ) */ e -= 1; z = x - 0.5L; y = 0.5L * z + 0.5L; } else { /* 2 (x-1)/(x+1) */ z = x - 0.5L; z -= 0.5L; y = 0.5L * x + 0.5L; } x = z / y; z = x*x; z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) ); z = z + e * C2; z = z + x; z = z + e * C1; return( z ); } /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ if( x < SQRTH ) { e -= 1; if (e != 0) x = 2.0 * x - 1.0L; else x = xm1; } else { if (e != 0) x = x - 1.0L; else x = xm1; } z = x*x; y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) ); y = y + e * C2; z = y - 0.5 * z; z = z + x; z = z + e * C1; return( z ); }