/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2015-2019 Paul Sokolovsky * Copyright (c) 2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/stream.h" #include "py/objstr.h" #if MICROPY_PY_SSL && MICROPY_SSL_AXTLS #include "ssl.h" #define PROTOCOL_TLS_CLIENT (0) #define PROTOCOL_TLS_SERVER (1) // This corresponds to an SSLContext object. typedef struct _mp_obj_ssl_context_t { mp_obj_base_t base; mp_obj_t key; mp_obj_t cert; } mp_obj_ssl_context_t; // This corresponds to an SSLSocket object. typedef struct _mp_obj_ssl_socket_t { mp_obj_base_t base; mp_obj_t sock; SSL_CTX *ssl_ctx; SSL *ssl_sock; byte *buf; uint32_t bytes_left; bool blocking; } mp_obj_ssl_socket_t; struct ssl_args { mp_arg_val_t key; mp_arg_val_t cert; mp_arg_val_t server_side; mp_arg_val_t server_hostname; mp_arg_val_t do_handshake; }; STATIC const mp_obj_type_t ssl_context_type; STATIC const mp_obj_type_t ssl_socket_type; STATIC mp_obj_t ssl_socket_make_new(mp_obj_ssl_context_t *ssl_context, mp_obj_t sock, bool server_side, bool do_handshake_on_connect, mp_obj_t server_hostname); /******************************************************************************/ // Helper functions. // Table of error strings corresponding to SSL_xxx error codes. STATIC const char *const ssl_error_tab1[] = { "NOT_OK", "DEAD", "CLOSE_NOTIFY", "EAGAIN", }; STATIC const char *const ssl_error_tab2[] = { "CONN_LOST", "RECORD_OVERFLOW", "SOCK_SETUP_FAILURE", NULL, "INVALID_HANDSHAKE", "INVALID_PROT_MSG", "INVALID_HMAC", "INVALID_VERSION", "UNSUPPORTED_EXTENSION", "INVALID_SESSION", "NO_CIPHER", "INVALID_CERT_HASH_ALG", "BAD_CERTIFICATE", "INVALID_KEY", NULL, "FINISHED_INVALID", "NO_CERT_DEFINED", "NO_CLIENT_RENOG", "NOT_SUPPORTED", }; STATIC NORETURN void ssl_raise_error(int err) { MP_STATIC_ASSERT(SSL_NOT_OK - 3 == SSL_EAGAIN); MP_STATIC_ASSERT(SSL_ERROR_CONN_LOST - 18 == SSL_ERROR_NOT_SUPPORTED); // Check if err corresponds to something in one of the error string tables. const char *errstr = NULL; if (SSL_NOT_OK >= err && err >= SSL_EAGAIN) { errstr = ssl_error_tab1[SSL_NOT_OK - err]; } else if (SSL_ERROR_CONN_LOST >= err && err >= SSL_ERROR_NOT_SUPPORTED) { errstr = ssl_error_tab2[SSL_ERROR_CONN_LOST - err]; } // Unknown error, just raise the error code. if (errstr == NULL) { mp_raise_OSError(err); } // Construct string object. mp_obj_str_t *o_str = m_new_obj_maybe(mp_obj_str_t); if (o_str == NULL) { mp_raise_OSError(err); } o_str->base.type = &mp_type_str; o_str->data = (const byte *)errstr; o_str->len = strlen((char *)o_str->data); o_str->hash = qstr_compute_hash(o_str->data, o_str->len); // Raise OSError(err, str). mp_obj_t args[2] = { MP_OBJ_NEW_SMALL_INT(err), MP_OBJ_FROM_PTR(o_str)}; nlr_raise(mp_obj_exception_make_new(&mp_type_OSError, 2, 0, args)); } /******************************************************************************/ // SSLContext type. STATIC mp_obj_t ssl_context_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); // The "protocol" argument is ignored in this implementation. // Create SSLContext object. #if MICROPY_PY_SSL_FINALISER mp_obj_ssl_context_t *self = m_new_obj_with_finaliser(mp_obj_ssl_context_t); #else mp_obj_ssl_context_t *self = m_new_obj(mp_obj_ssl_context_t); #endif self->base.type = type_in; self->key = mp_const_none; self->cert = mp_const_none; return MP_OBJ_FROM_PTR(self); } STATIC void ssl_context_load_key(mp_obj_ssl_context_t *self, mp_obj_t key_obj, mp_obj_t cert_obj) { self->key = key_obj; self->cert = cert_obj; } STATIC mp_obj_t ssl_context_wrap_socket(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_server_side, ARG_do_handshake_on_connect, ARG_server_hostname }; static const mp_arg_t allowed_args[] = { { MP_QSTR_server_side, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_do_handshake_on_connect, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_server_hostname, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // Parse arguments. mp_obj_ssl_context_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_obj_t sock = pos_args[1]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Create and return the new SSLSocket object. return ssl_socket_make_new(self, sock, args[ARG_server_side].u_bool, args[ARG_do_handshake_on_connect].u_bool, args[ARG_server_hostname].u_obj); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(ssl_context_wrap_socket_obj, 2, ssl_context_wrap_socket); STATIC const mp_rom_map_elem_t ssl_context_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_wrap_socket), MP_ROM_PTR(&ssl_context_wrap_socket_obj) }, }; STATIC MP_DEFINE_CONST_DICT(ssl_context_locals_dict, ssl_context_locals_dict_table); STATIC MP_DEFINE_CONST_OBJ_TYPE( ssl_context_type, MP_QSTR_SSLContext, MP_TYPE_FLAG_NONE, make_new, ssl_context_make_new, locals_dict, &ssl_context_locals_dict ); /******************************************************************************/ // SSLSocket type. STATIC mp_obj_t ssl_socket_make_new(mp_obj_ssl_context_t *ssl_context, mp_obj_t sock, bool server_side, bool do_handshake_on_connect, mp_obj_t server_hostname) { #if MICROPY_PY_SSL_FINALISER mp_obj_ssl_socket_t *o = m_new_obj_with_finaliser(mp_obj_ssl_socket_t); #else mp_obj_ssl_socket_t *o = m_new_obj(mp_obj_ssl_socket_t); #endif o->base.type = &ssl_socket_type; o->buf = NULL; o->bytes_left = 0; o->sock = MP_OBJ_NULL; o->blocking = true; uint32_t options = SSL_SERVER_VERIFY_LATER; if (!do_handshake_on_connect) { options |= SSL_CONNECT_IN_PARTS; } if (ssl_context->key != mp_const_none) { options |= SSL_NO_DEFAULT_KEY; } if ((o->ssl_ctx = ssl_ctx_new(options, SSL_DEFAULT_CLNT_SESS)) == NULL) { mp_raise_OSError(MP_EINVAL); } if (ssl_context->key != mp_const_none) { size_t len; const byte *data = (const byte *)mp_obj_str_get_data(ssl_context->key, &len); int res = ssl_obj_memory_load(o->ssl_ctx, SSL_OBJ_RSA_KEY, data, len, NULL); if (res != SSL_OK) { mp_raise_ValueError(MP_ERROR_TEXT("invalid key")); } data = (const byte *)mp_obj_str_get_data(ssl_context->cert, &len); res = ssl_obj_memory_load(o->ssl_ctx, SSL_OBJ_X509_CERT, data, len, NULL); if (res != SSL_OK) { mp_raise_ValueError(MP_ERROR_TEXT("invalid cert")); } } if (server_side) { o->ssl_sock = ssl_server_new(o->ssl_ctx, (long)sock); } else { SSL_EXTENSIONS *ext = ssl_ext_new(); if (server_hostname != mp_const_none) { ext->host_name = (char *)mp_obj_str_get_str(server_hostname); } o->ssl_sock = ssl_client_new(o->ssl_ctx, (long)sock, NULL, 0, ext); if (do_handshake_on_connect) { int r = ssl_handshake_status(o->ssl_sock); if (r != SSL_OK) { if (r == SSL_CLOSE_NOTIFY) { // EOF r = MP_ENOTCONN; } else if (r == SSL_EAGAIN) { r = MP_EAGAIN; } ssl_raise_error(r); } } } // Populate the socket entry now that the SSLSocket is fully set up. // This prevents closing the socket if an exception is raised above. o->sock = sock; return o; } STATIC mp_uint_t ssl_socket_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(o_in); if (o->ssl_sock == NULL) { *errcode = EBADF; return MP_STREAM_ERROR; } while (o->bytes_left == 0) { mp_int_t r = ssl_read(o->ssl_sock, &o->buf); if (r == SSL_OK) { // SSL_OK from ssl_read() means "everything is ok, but there's // no user data yet". It may happen e.g. if handshake is not // finished yet. The best way we can treat it is by returning // EAGAIN. This may be a bit unexpected in blocking mode, but // default is to perform complete handshake in constructor, so // this should not happen in blocking mode. On the other hand, // in nonblocking mode EAGAIN (comparing to the alternative of // looping) is really preferable. if (o->blocking) { continue; } else { goto eagain; } } if (r < 0) { if (r == SSL_CLOSE_NOTIFY || r == SSL_ERROR_CONN_LOST) { // EOF return 0; } if (r == SSL_EAGAIN) { eagain: r = MP_EAGAIN; } *errcode = r; return MP_STREAM_ERROR; } o->bytes_left = r; } if (size > o->bytes_left) { size = o->bytes_left; } memcpy(buf, o->buf, size); o->buf += size; o->bytes_left -= size; return size; } STATIC mp_uint_t ssl_socket_write(mp_obj_t o_in, const void *buf, mp_uint_t size, int *errcode) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(o_in); if (o->ssl_sock == NULL) { *errcode = EBADF; return MP_STREAM_ERROR; } mp_int_t r; eagain: r = ssl_write(o->ssl_sock, buf, size); if (r == 0) { // see comment in ssl_socket_read above if (o->blocking) { goto eagain; } else { r = SSL_EAGAIN; } } if (r < 0) { if (r == SSL_CLOSE_NOTIFY || r == SSL_ERROR_CONN_LOST) { return 0; // EOF } if (r == SSL_EAGAIN) { r = MP_EAGAIN; } *errcode = r; return MP_STREAM_ERROR; } return r; } STATIC mp_uint_t ssl_socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) { mp_obj_ssl_socket_t *self = MP_OBJ_TO_PTR(o_in); if (request == MP_STREAM_CLOSE) { if (self->ssl_sock == NULL) { // Already closed socket, do nothing. return 0; } ssl_free(self->ssl_sock); ssl_ctx_free(self->ssl_ctx); self->ssl_sock = NULL; } if (self->sock == MP_OBJ_NULL) { // Underlying socket may be null if the constructor raised an exception. return 0; } // Pass all requests down to the underlying socket return mp_get_stream(self->sock)->ioctl(self->sock, request, arg, errcode); } STATIC mp_obj_t ssl_socket_setblocking(mp_obj_t self_in, mp_obj_t flag_in) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(self_in); mp_obj_t sock = o->sock; mp_obj_t dest[3]; mp_load_method(sock, MP_QSTR_setblocking, dest); dest[2] = flag_in; mp_obj_t res = mp_call_method_n_kw(1, 0, dest); o->blocking = mp_obj_is_true(flag_in); return res; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(ssl_socket_setblocking_obj, ssl_socket_setblocking); STATIC const mp_rom_map_elem_t ssl_socket_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_setblocking), MP_ROM_PTR(&ssl_socket_setblocking_obj) }, { MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_stream_close_obj) }, #if MICROPY_PY_SSL_FINALISER { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&mp_stream_close_obj) }, #endif }; STATIC MP_DEFINE_CONST_DICT(ssl_socket_locals_dict, ssl_socket_locals_dict_table); STATIC const mp_stream_p_t ssl_socket_stream_p = { .read = ssl_socket_read, .write = ssl_socket_write, .ioctl = ssl_socket_ioctl, }; STATIC MP_DEFINE_CONST_OBJ_TYPE( ssl_socket_type, MP_QSTR_SSLSocket, MP_TYPE_FLAG_NONE, protocol, &ssl_socket_stream_p, locals_dict, &ssl_socket_locals_dict ); /******************************************************************************/ // ssl module. STATIC mp_obj_t mod_ssl_wrap_socket(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_key, ARG_cert, ARG_server_side, ARG_server_hostname, ARG_do_handshake, }; static const mp_arg_t allowed_args[] = { { MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_cert, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_server_side, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_server_hostname, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_do_handshake, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, }; // Parse arguments. mp_obj_t sock = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Create SSLContext. mp_int_t protocol = args[ARG_server_side].u_bool ? PROTOCOL_TLS_SERVER : PROTOCOL_TLS_CLIENT; mp_obj_t ssl_context_args[1] = { MP_OBJ_NEW_SMALL_INT(protocol) }; mp_obj_ssl_context_t *ssl_context = MP_OBJ_TO_PTR(ssl_context_make_new(&ssl_context_type, 1, 0, ssl_context_args)); // Load key and cert if given. if (args[ARG_key].u_obj != mp_const_none) { ssl_context_load_key(ssl_context, args[ARG_key].u_obj, args[ARG_cert].u_obj); } // Create and return the new SSLSocket object. return ssl_socket_make_new(ssl_context, sock, args[ARG_server_side].u_bool, args[ARG_do_handshake].u_bool, args[ARG_server_hostname].u_obj); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(mod_ssl_wrap_socket_obj, 1, mod_ssl_wrap_socket); STATIC const mp_rom_map_elem_t mp_module_ssl_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_ssl) }, // Functions. { MP_ROM_QSTR(MP_QSTR_wrap_socket), MP_ROM_PTR(&mod_ssl_wrap_socket_obj) }, // Classes. { MP_ROM_QSTR(MP_QSTR_SSLContext), MP_ROM_PTR(&ssl_context_type) }, // Constants. { MP_ROM_QSTR(MP_QSTR_PROTOCOL_TLS_CLIENT), MP_ROM_INT(PROTOCOL_TLS_CLIENT) }, { MP_ROM_QSTR(MP_QSTR_PROTOCOL_TLS_SERVER), MP_ROM_INT(PROTOCOL_TLS_SERVER) }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_ssl_globals, mp_module_ssl_globals_table); const mp_obj_module_t mp_module_ssl = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&mp_module_ssl_globals, }; MP_REGISTER_EXTENSIBLE_MODULE(MP_QSTR_ssl, mp_module_ssl); #endif // MICROPY_PY_SSL && MICROPY_SSL_AXTLS