/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mpconfig.h" // wrapper around everything in this file #if MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB #include "py/mpstate.h" #include "py/asmthumb.h" #ifdef _MSC_VER #include static uint32_t mp_clz(uint32_t x) { unsigned long lz = 0; return _BitScanReverse(&lz, x) ? (sizeof(x) * 8 - 1) - lz : 0; } static uint32_t mp_ctz(uint32_t x) { unsigned long tz = 0; return _BitScanForward(&tz, x) ? tz : 0; } #else #define mp_clz(x) __builtin_clz(x) #define mp_ctz(x) __builtin_ctz(x) #endif #define UNSIGNED_FIT5(x) ((uint32_t)(x) < 32) #define UNSIGNED_FIT7(x) ((uint32_t)(x) < 128) #define UNSIGNED_FIT8(x) (((x) & 0xffffff00) == 0) #define UNSIGNED_FIT16(x) (((x) & 0xffff0000) == 0) #define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80) #define SIGNED_FIT9(x) (((x) & 0xffffff00) == 0) || (((x) & 0xffffff00) == 0xffffff00) #define SIGNED_FIT12(x) (((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800) #define SIGNED_FIT23(x) (((x) & 0xffc00000) == 0) || (((x) & 0xffc00000) == 0xffc00000) // Note: these actually take an imm12 but the high-bit is not encoded here #define OP_ADD_W_RRI_HI(reg_src) (0xf200 | (reg_src)) #define OP_ADD_W_RRI_LO(reg_dest, imm11) ((imm11 << 4 & 0x7000) | reg_dest << 8 | (imm11 & 0xff)) #define OP_SUB_W_RRI_HI(reg_src) (0xf2a0 | (reg_src)) #define OP_SUB_W_RRI_LO(reg_dest, imm11) ((imm11 << 4 & 0x7000) | reg_dest << 8 | (imm11 & 0xff)) #define OP_LDR_W_HI(reg_base) (0xf8d0 | (reg_base)) #define OP_LDR_W_LO(reg_dest, imm12) ((reg_dest) << 12 | (imm12)) #define OP_LDRH_W_HI(reg_base) (0xf8b0 | (reg_base)) #define OP_LDRH_W_LO(reg_dest, imm12) ((reg_dest) << 12 | (imm12)) static inline byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int n) { return mp_asm_base_get_cur_to_write_bytes(&as->base, n); } /* STATIC void asm_thumb_write_byte_1(asm_thumb_t *as, byte b1) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 1); c[0] = b1; } */ /* #define IMM32_L0(x) ((x) & 0xff) #define IMM32_L1(x) (((x) >> 8) & 0xff) #define IMM32_L2(x) (((x) >> 16) & 0xff) #define IMM32_L3(x) (((x) >> 24) & 0xff) STATIC void asm_thumb_write_word32(asm_thumb_t *as, int w32) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 4); c[0] = IMM32_L0(w32); c[1] = IMM32_L1(w32); c[2] = IMM32_L2(w32); c[3] = IMM32_L3(w32); } */ // rlolist is a bit map indicating desired lo-registers #define OP_PUSH_RLIST(rlolist) (0xb400 | (rlolist)) #define OP_PUSH_RLIST_LR(rlolist) (0xb400 | 0x0100 | (rlolist)) #define OP_POP_RLIST(rlolist) (0xbc00 | (rlolist)) #define OP_POP_RLIST_PC(rlolist) (0xbc00 | 0x0100 | (rlolist)) // The number of words must fit in 7 unsigned bits #define OP_ADD_SP(num_words) (0xb000 | (num_words)) #define OP_SUB_SP(num_words) (0xb080 | (num_words)) // locals: // - stored on the stack in ascending order // - numbered 0 through num_locals-1 // - SP points to first local // // | SP // v // l0 l1 l2 ... l(n-1) // ^ ^ // | low address | high address in RAM void asm_thumb_entry(asm_thumb_t *as, int num_locals) { assert(num_locals >= 0); // If this Thumb machine code is run from ARM state then add a prelude // to switch to Thumb state for the duration of the function. #if MICROPY_DYNAMIC_COMPILER || MICROPY_EMIT_ARM || (defined(__arm__) && !defined(__thumb2__) && !defined(__thumb__)) #if MICROPY_DYNAMIC_COMPILER if (mp_dynamic_compiler.native_arch == MP_NATIVE_ARCH_ARMV6) #endif { asm_thumb_op32(as, 0x4010, 0xe92d); // push {r4, lr} asm_thumb_op32(as, 0xe009, 0xe28f); // add lr, pc, 8 + 1 asm_thumb_op32(as, 0xff3e, 0xe12f); // blx lr asm_thumb_op32(as, 0x4010, 0xe8bd); // pop {r4, lr} asm_thumb_op32(as, 0xff1e, 0xe12f); // bx lr } #endif // work out what to push and how many extra spaces to reserve on stack // so that we have enough for all locals and it's aligned an 8-byte boundary // we push extra regs (r1, r2, r3) to help do the stack adjustment // we probably should just always subtract from sp, since this would be more efficient // for push rlist, lowest numbered register at the lowest address uint reglist; uint stack_adjust; // don't pop r0 because it's used for return value switch (num_locals) { case 0: reglist = 0xf2; stack_adjust = 0; break; case 1: reglist = 0xf2; stack_adjust = 0; break; case 2: reglist = 0xfe; stack_adjust = 0; break; case 3: reglist = 0xfe; stack_adjust = 0; break; default: reglist = 0xfe; stack_adjust = ((num_locals - 3) + 1) & (~1); break; } asm_thumb_op16(as, OP_PUSH_RLIST_LR(reglist)); if (stack_adjust > 0) { if (asm_thumb_allow_armv7m(as)) { if (UNSIGNED_FIT7(stack_adjust)) { asm_thumb_op16(as, OP_SUB_SP(stack_adjust)); } else { asm_thumb_op32(as, OP_SUB_W_RRI_HI(ASM_THUMB_REG_SP), OP_SUB_W_RRI_LO(ASM_THUMB_REG_SP, stack_adjust * 4)); } } else { int adj = stack_adjust; // we don't expect the stack_adjust to be massive while (!UNSIGNED_FIT7(adj)) { asm_thumb_op16(as, OP_SUB_SP(127)); adj -= 127; } asm_thumb_op16(as, OP_SUB_SP(adj)); } } as->push_reglist = reglist; as->stack_adjust = stack_adjust; } void asm_thumb_exit(asm_thumb_t *as) { if (as->stack_adjust > 0) { if (asm_thumb_allow_armv7m(as)) { if (UNSIGNED_FIT7(as->stack_adjust)) { asm_thumb_op16(as, OP_ADD_SP(as->stack_adjust)); } else { asm_thumb_op32(as, OP_ADD_W_RRI_HI(ASM_THUMB_REG_SP), OP_ADD_W_RRI_LO(ASM_THUMB_REG_SP, as->stack_adjust * 4)); } } else { int adj = as->stack_adjust; // we don't expect the stack_adjust to be massive while (!UNSIGNED_FIT7(adj)) { asm_thumb_op16(as, OP_ADD_SP(127)); adj -= 127; } asm_thumb_op16(as, OP_ADD_SP(adj)); } } asm_thumb_op16(as, OP_POP_RLIST_PC(as->push_reglist)); } STATIC mp_uint_t get_label_dest(asm_thumb_t *as, uint label) { assert(label < as->base.max_num_labels); return as->base.label_offsets[label]; } void asm_thumb_op16(asm_thumb_t *as, uint op) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 2); if (c != NULL) { // little endian c[0] = op; c[1] = op >> 8; } } void asm_thumb_op32(asm_thumb_t *as, uint op1, uint op2) { byte *c = asm_thumb_get_cur_to_write_bytes(as, 4); if (c != NULL) { // little endian, op1 then op2 c[0] = op1; c[1] = op1 >> 8; c[2] = op2; c[3] = op2 >> 8; } } #define OP_FORMAT_4(op, rlo_dest, rlo_src) ((op) | ((rlo_src) << 3) | (rlo_dest)) void asm_thumb_format_4(asm_thumb_t *as, uint op, uint rlo_dest, uint rlo_src) { assert(rlo_dest < ASM_THUMB_REG_R8); assert(rlo_src < ASM_THUMB_REG_R8); asm_thumb_op16(as, OP_FORMAT_4(op, rlo_dest, rlo_src)); } void asm_thumb_mov_reg_reg(asm_thumb_t *as, uint reg_dest, uint reg_src) { uint op_lo; if (reg_src < 8) { op_lo = reg_src << 3; } else { op_lo = 0x40 | ((reg_src - 8) << 3); } if (reg_dest < 8) { op_lo |= reg_dest; } else { op_lo |= 0x80 | (reg_dest - 8); } // mov reg_dest, reg_src asm_thumb_op16(as, 0x4600 | op_lo); } // if loading lo half with movw, the i16 value will be zero extended into the r32 register! void asm_thumb_mov_reg_i16(asm_thumb_t *as, uint mov_op, uint reg_dest, int i16_src) { assert(reg_dest < ASM_THUMB_REG_R15); // mov[wt] reg_dest, #i16_src asm_thumb_op32(as, mov_op | ((i16_src >> 1) & 0x0400) | ((i16_src >> 12) & 0xf), ((i16_src << 4) & 0x7000) | (reg_dest << 8) | (i16_src & 0xff)); } static void asm_thumb_mov_rlo_i16(asm_thumb_t *as, uint rlo_dest, int i16_src) { asm_thumb_mov_rlo_i8(as, rlo_dest, (i16_src >> 8) & 0xff); asm_thumb_lsl_rlo_rlo_i5(as, rlo_dest, rlo_dest, 8); asm_thumb_add_rlo_i8(as, rlo_dest, i16_src & 0xff); } #define OP_B_N(byte_offset) (0xe000 | (((byte_offset) >> 1) & 0x07ff)) bool asm_thumb_b_n_label(asm_thumb_t *as, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->base.code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction asm_thumb_op16(as, OP_B_N(rel)); return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT12(rel); } #define OP_BCC_N(cond, byte_offset) (0xd000 | ((cond) << 8) | (((byte_offset) >> 1) & 0x00ff)) // all these bit-arithmetic operations need coverage testing! #define OP_BCC_W_HI(cond, byte_offset) (0xf000 | ((cond) << 6) | (((byte_offset) >> 10) & 0x0400) | (((byte_offset) >> 14) & 0x003f)) #define OP_BCC_W_LO(byte_offset) (0x8000 | ((byte_offset) & 0x2000) | (((byte_offset) >> 1) & 0x0fff)) bool asm_thumb_bcc_nw_label(asm_thumb_t *as, int cond, uint label, bool wide) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->base.code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (!wide) { asm_thumb_op16(as, OP_BCC_N(cond, rel)); return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT9(rel); } else if (asm_thumb_allow_armv7m(as)) { asm_thumb_op32(as, OP_BCC_W_HI(cond, rel), OP_BCC_W_LO(rel)); return true; } else { // this method should not be called for ARMV6M return false; } } #define OP_BL_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff)) #define OP_BL_LO(byte_offset) (0xf800 | (((byte_offset) >> 1) & 0x07ff)) bool asm_thumb_bl_label(asm_thumb_t *as, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->base.code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction asm_thumb_op32(as, OP_BL_HI(rel), OP_BL_LO(rel)); return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT23(rel); } size_t asm_thumb_mov_reg_i32(asm_thumb_t *as, uint reg_dest, mp_uint_t i32) { // movw, movt does it in 8 bytes // ldr [pc, #], dw does it in 6 bytes, but we might not reach to end of code for dw size_t loc = mp_asm_base_get_code_pos(&as->base); if (asm_thumb_allow_armv7m(as)) { asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, reg_dest, i32); asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVT, reg_dest, i32 >> 16); } else { // should only be called with lo reg for ARMV6M assert(reg_dest < ASM_THUMB_REG_R8); // sanity check that generated code is aligned assert(!as->base.code_base || !(3u & (uintptr_t)as->base.code_base)); // basically: // (nop) // ldr reg_dest, _data // b 1f // _data: .word i32 // 1: if (as->base.code_offset & 2u) { asm_thumb_op16(as, ASM_THUMB_OP_NOP); } asm_thumb_ldr_rlo_pcrel_i8(as, reg_dest, 0); asm_thumb_op16(as, OP_B_N(2)); asm_thumb_op16(as, i32 & 0xffff); asm_thumb_op16(as, i32 >> 16); } return loc; } void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32) { if (reg_dest < 8 && UNSIGNED_FIT8(i32)) { asm_thumb_mov_rlo_i8(as, reg_dest, i32); } else if (asm_thumb_allow_armv7m(as)) { if (UNSIGNED_FIT16(i32)) { asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, reg_dest, i32); } else { asm_thumb_mov_reg_i32(as, reg_dest, i32); } } else { uint rlo_dest = reg_dest; assert(rlo_dest < ASM_THUMB_REG_R8); // should never be called for ARMV6M bool negate = i32 < 0 && ((i32 + i32) & 0xffffffffu); // don't negate 0x80000000 if (negate) { i32 = -i32; } uint clz = mp_clz(i32); uint ctz = i32 ? mp_ctz(i32) : 0; assert(clz + ctz <= 32); if (clz + ctz >= 24) { asm_thumb_mov_rlo_i8(as, rlo_dest, (i32 >> ctz) & 0xff); asm_thumb_lsl_rlo_rlo_i5(as, rlo_dest, rlo_dest, ctz); } else if (UNSIGNED_FIT16(i32)) { asm_thumb_mov_rlo_i16(as, rlo_dest, i32); } else { if (negate) { // no point in negating if we're storing in 32 bit anyway negate = false; i32 = -i32; } asm_thumb_mov_reg_i32(as, rlo_dest, i32); } if (negate) { asm_thumb_neg_rlo_rlo(as, rlo_dest, rlo_dest); } } } #define OP_STR_TO_SP_OFFSET(rlo_dest, word_offset) (0x9000 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) #define OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset) (0x9800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) static void asm_thumb_mov_local_check(asm_thumb_t *as, int word_offset) { if (as->base.pass >= MP_ASM_PASS_EMIT) { assert(word_offset >= 0); if (!UNSIGNED_FIT8(word_offset)) { mp_raise_NotImplementedError(MP_ERROR_TEXT("too many locals for native method")); } } } void asm_thumb_mov_local_reg(asm_thumb_t *as, int local_num, uint rlo_src) { assert(rlo_src < ASM_THUMB_REG_R8); int word_offset = local_num; asm_thumb_mov_local_check(as, word_offset); asm_thumb_op16(as, OP_STR_TO_SP_OFFSET(rlo_src, word_offset)); } void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num) { assert(rlo_dest < ASM_THUMB_REG_R8); int word_offset = local_num; asm_thumb_mov_local_check(as, word_offset); asm_thumb_op16(as, OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset)); } #define OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset) (0xa800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num) { assert(rlo_dest < ASM_THUMB_REG_R8); int word_offset = local_num; assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0); asm_thumb_op16(as, OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset)); } void asm_thumb_mov_reg_pcrel(asm_thumb_t *as, uint rlo_dest, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->base.code_offset; rel |= 1; // to stay in Thumb state when jumping to this address if (asm_thumb_allow_armv7m(as)) { rel -= 6 + 4; // adjust for mov_reg_i16, sxth_rlo_rlo and then PC+4 prefetch of add_reg_reg asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, rlo_dest, rel); // 4 bytes asm_thumb_sxth_rlo_rlo(as, rlo_dest, rlo_dest); // 2 bytes } else { rel -= 8 + 4; // adjust for four instructions and then PC+4 prefetch of add_reg_reg // 6 bytes asm_thumb_mov_rlo_i16(as, rlo_dest, rel); // 2 bytes - not always needed, but we want to keep the size the same asm_thumb_sxth_rlo_rlo(as, rlo_dest, rlo_dest); } asm_thumb_add_reg_reg(as, rlo_dest, ASM_THUMB_REG_R15); // 2 bytes } // ARMv7-M only static inline void asm_thumb_ldr_reg_reg_i12(asm_thumb_t *as, uint reg_dest, uint reg_base, uint word_offset) { asm_thumb_op32(as, OP_LDR_W_HI(reg_base), OP_LDR_W_LO(reg_dest, word_offset * 4)); } // emits code for: reg_dest = reg_base + offset << offset_shift static void asm_thumb_add_reg_reg_offset(asm_thumb_t *as, uint reg_dest, uint reg_base, uint offset, uint offset_shift) { if (reg_dest < ASM_THUMB_REG_R8 && reg_base < ASM_THUMB_REG_R8) { if (offset << offset_shift < 256) { if (reg_dest != reg_base) { asm_thumb_mov_reg_reg(as, reg_dest, reg_base); } asm_thumb_add_rlo_i8(as, reg_dest, offset << offset_shift); } else if (UNSIGNED_FIT8(offset) && reg_dest != reg_base) { asm_thumb_mov_rlo_i8(as, reg_dest, offset); asm_thumb_lsl_rlo_rlo_i5(as, reg_dest, reg_dest, offset_shift); asm_thumb_add_rlo_rlo_rlo(as, reg_dest, reg_dest, reg_base); } else if (reg_dest != reg_base) { asm_thumb_mov_rlo_i16(as, reg_dest, offset << offset_shift); asm_thumb_add_rlo_rlo_rlo(as, reg_dest, reg_dest, reg_dest); } else { uint reg_other = reg_dest ^ 7; asm_thumb_op16(as, OP_PUSH_RLIST((1 << reg_other))); asm_thumb_mov_rlo_i16(as, reg_other, offset << offset_shift); asm_thumb_add_rlo_rlo_rlo(as, reg_dest, reg_dest, reg_other); asm_thumb_op16(as, OP_POP_RLIST((1 << reg_other))); } } else { assert(0); // should never be called for ARMV6M } } void asm_thumb_ldr_reg_reg_i12_optimised(asm_thumb_t *as, uint reg_dest, uint reg_base, uint word_offset) { if (reg_dest < ASM_THUMB_REG_R8 && reg_base < ASM_THUMB_REG_R8 && UNSIGNED_FIT5(word_offset)) { asm_thumb_ldr_rlo_rlo_i5(as, reg_dest, reg_base, word_offset); } else if (asm_thumb_allow_armv7m(as)) { asm_thumb_ldr_reg_reg_i12(as, reg_dest, reg_base, word_offset); } else { asm_thumb_add_reg_reg_offset(as, reg_dest, reg_base, word_offset - 31, 2); asm_thumb_ldr_rlo_rlo_i5(as, reg_dest, reg_dest, 31); } } // ARMv7-M only static inline void asm_thumb_ldrh_reg_reg_i12(asm_thumb_t *as, uint reg_dest, uint reg_base, uint uint16_offset) { asm_thumb_op32(as, OP_LDRH_W_HI(reg_base), OP_LDRH_W_LO(reg_dest, uint16_offset * 2)); } void asm_thumb_ldrh_reg_reg_i12_optimised(asm_thumb_t *as, uint reg_dest, uint reg_base, uint uint16_offset) { if (reg_dest < ASM_THUMB_REG_R8 && reg_base < ASM_THUMB_REG_R8 && UNSIGNED_FIT5(uint16_offset)) { asm_thumb_ldrh_rlo_rlo_i5(as, reg_dest, reg_base, uint16_offset); } else if (asm_thumb_allow_armv7m(as)) { asm_thumb_ldrh_reg_reg_i12(as, reg_dest, reg_base, uint16_offset); } else { asm_thumb_add_reg_reg_offset(as, reg_dest, reg_base, uint16_offset - 31, 1); asm_thumb_ldrh_rlo_rlo_i5(as, reg_dest, reg_dest, 31); } } // this could be wrong, because it should have a range of +/- 16MiB... #define OP_BW_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff)) #define OP_BW_LO(byte_offset) (0xb800 | (((byte_offset) >> 1) & 0x07ff)) void asm_thumb_b_label(asm_thumb_t *as, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->base.code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (dest != (mp_uint_t)-1 && rel <= -4) { // is a backwards jump, so we know the size of the jump on the first pass // calculate rel assuming 12 bit relative jump if (SIGNED_FIT12(rel)) { asm_thumb_op16(as, OP_B_N(rel)); return; } } // is a large backwards jump, or a forwards jump (that must be assumed large) if (asm_thumb_allow_armv7m(as)) { asm_thumb_op32(as, OP_BW_HI(rel), OP_BW_LO(rel)); } else { if (SIGNED_FIT12(rel)) { // this code path has to be the same number of instructions irrespective of rel asm_thumb_op16(as, OP_B_N(rel)); } else { asm_thumb_op16(as, ASM_THUMB_OP_NOP); if (dest != (mp_uint_t)-1) { // we have an actual branch > 12 bits; this is not handled yet mp_raise_NotImplementedError(MP_ERROR_TEXT("native method too big")); } } } } void asm_thumb_bcc_label(asm_thumb_t *as, int cond, uint label) { mp_uint_t dest = get_label_dest(as, label); mp_int_t rel = dest - as->base.code_offset; rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction if (dest != (mp_uint_t)-1 && rel <= -4) { // is a backwards jump, so we know the size of the jump on the first pass // calculate rel assuming 9 bit relative jump if (SIGNED_FIT9(rel)) { asm_thumb_op16(as, OP_BCC_N(cond, rel)); return; } } // is a large backwards jump, or a forwards jump (that must be assumed large) if (asm_thumb_allow_armv7m(as)) { asm_thumb_op32(as, OP_BCC_W_HI(cond, rel), OP_BCC_W_LO(rel)); } else { // reverse the sense of the branch to jump over a longer branch asm_thumb_op16(as, OP_BCC_N(cond ^ 1, 0)); asm_thumb_b_label(as, label); } } void asm_thumb_bcc_rel9(asm_thumb_t *as, int cond, int rel) { rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction assert(SIGNED_FIT9(rel)); asm_thumb_op16(as, OP_BCC_N(cond, rel)); } void asm_thumb_b_rel12(asm_thumb_t *as, int rel) { rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction assert(SIGNED_FIT12(rel)); asm_thumb_op16(as, OP_B_N(rel)); } #define OP_BLX(reg) (0x4780 | ((reg) << 3)) #define OP_SVC(arg) (0xdf00 | (arg)) void asm_thumb_bl_ind(asm_thumb_t *as, uint fun_id, uint reg_temp) { // Load ptr to function from table, indexed by fun_id, then call it asm_thumb_ldr_reg_reg_i12_optimised(as, reg_temp, ASM_THUMB_REG_FUN_TABLE, fun_id); asm_thumb_op16(as, OP_BLX(reg_temp)); } #endif // MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB