/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/reader.h" #include "py/lexer.h" #include "py/runtime.h" #if MICROPY_ENABLE_COMPILER #define TAB_SIZE (8) // TODO seems that CPython allows NULL byte in the input stream // don't know if that's intentional or not, but we don't allow it #define MP_LEXER_EOF ((unichar)MP_READER_EOF) #define CUR_CHAR(lex) ((lex)->chr0) STATIC bool is_end(mp_lexer_t *lex) { return lex->chr0 == MP_LEXER_EOF; } STATIC bool is_physical_newline(mp_lexer_t *lex) { return lex->chr0 == '\n'; } STATIC bool is_char(mp_lexer_t *lex, byte c) { return lex->chr0 == c; } STATIC bool is_char_or(mp_lexer_t *lex, byte c1, byte c2) { return lex->chr0 == c1 || lex->chr0 == c2; } STATIC bool is_char_or3(mp_lexer_t *lex, byte c1, byte c2, byte c3) { return lex->chr0 == c1 || lex->chr0 == c2 || lex->chr0 == c3; } #if MICROPY_PY_FSTRINGS STATIC bool is_char_or4(mp_lexer_t *lex, byte c1, byte c2, byte c3, byte c4) { return lex->chr0 == c1 || lex->chr0 == c2 || lex->chr0 == c3 || lex->chr0 == c4; } #endif STATIC bool is_char_following(mp_lexer_t *lex, byte c) { return lex->chr1 == c; } STATIC bool is_char_following_or(mp_lexer_t *lex, byte c1, byte c2) { return lex->chr1 == c1 || lex->chr1 == c2; } STATIC bool is_char_following_following_or(mp_lexer_t *lex, byte c1, byte c2) { return lex->chr2 == c1 || lex->chr2 == c2; } STATIC bool is_char_and(mp_lexer_t *lex, byte c1, byte c2) { return lex->chr0 == c1 && lex->chr1 == c2; } STATIC bool is_whitespace(mp_lexer_t *lex) { return unichar_isspace(lex->chr0); } STATIC bool is_letter(mp_lexer_t *lex) { return unichar_isalpha(lex->chr0); } STATIC bool is_digit(mp_lexer_t *lex) { return unichar_isdigit(lex->chr0); } STATIC bool is_following_digit(mp_lexer_t *lex) { return unichar_isdigit(lex->chr1); } STATIC bool is_following_base_char(mp_lexer_t *lex) { const unichar chr1 = lex->chr1 | 0x20; return chr1 == 'b' || chr1 == 'o' || chr1 == 'x'; } STATIC bool is_following_odigit(mp_lexer_t *lex) { return lex->chr1 >= '0' && lex->chr1 <= '7'; } STATIC bool is_string_or_bytes(mp_lexer_t *lex) { return is_char_or(lex, '\'', '\"') #if MICROPY_PY_FSTRINGS || (is_char_or4(lex, 'r', 'u', 'b', 'f') && is_char_following_or(lex, '\'', '\"')) || (((is_char_and(lex, 'r', 'f') || is_char_and(lex, 'f', 'r')) && is_char_following_following_or(lex, '\'', '\"'))) #else || (is_char_or3(lex, 'r', 'u', 'b') && is_char_following_or(lex, '\'', '\"')) #endif || ((is_char_and(lex, 'r', 'b') || is_char_and(lex, 'b', 'r')) && is_char_following_following_or(lex, '\'', '\"')); } // to easily parse utf-8 identifiers we allow any raw byte with high bit set STATIC bool is_head_of_identifier(mp_lexer_t *lex) { return is_letter(lex) || lex->chr0 == '_' || lex->chr0 >= 0x80; } STATIC bool is_tail_of_identifier(mp_lexer_t *lex) { return is_head_of_identifier(lex) || is_digit(lex); } STATIC void next_char(mp_lexer_t *lex) { if (lex->chr0 == '\n') { // a new line ++lex->line; lex->column = 1; } else if (lex->chr0 == '\t') { // a tab lex->column = (((lex->column - 1 + TAB_SIZE) / TAB_SIZE) * TAB_SIZE) + 1; } else { // a character worth one column ++lex->column; } // shift the input queue forward lex->chr0 = lex->chr1; lex->chr1 = lex->chr2; // and add the next byte from either the fstring args or the reader #if MICROPY_PY_FSTRINGS if (lex->fstring_args_idx) { // if there are saved chars, then we're currently injecting fstring args if (lex->fstring_args_idx < lex->fstring_args.len) { lex->chr2 = lex->fstring_args.buf[lex->fstring_args_idx++]; } else { // no more fstring arg bytes lex->chr2 = '\0'; } if (lex->chr0 == '\0') { // consumed all fstring data, restore saved input queue lex->chr0 = lex->chr0_saved; lex->chr1 = lex->chr1_saved; lex->chr2 = lex->chr2_saved; // stop consuming fstring arg data vstr_reset(&lex->fstring_args); lex->fstring_args_idx = 0; } } else #endif { lex->chr2 = lex->reader.readbyte(lex->reader.data); } if (lex->chr1 == '\r') { // CR is a new line, converted to LF lex->chr1 = '\n'; if (lex->chr2 == '\n') { // CR LF is a single new line, throw out the extra LF lex->chr2 = lex->reader.readbyte(lex->reader.data); } } // check if we need to insert a newline at end of file if (lex->chr2 == MP_LEXER_EOF && lex->chr1 != MP_LEXER_EOF && lex->chr1 != '\n') { lex->chr2 = '\n'; } } STATIC void indent_push(mp_lexer_t *lex, size_t indent) { if (lex->num_indent_level >= lex->alloc_indent_level) { lex->indent_level = m_renew(uint16_t, lex->indent_level, lex->alloc_indent_level, lex->alloc_indent_level + MICROPY_ALLOC_LEXEL_INDENT_INC); lex->alloc_indent_level += MICROPY_ALLOC_LEXEL_INDENT_INC; } lex->indent_level[lex->num_indent_level++] = indent; } STATIC size_t indent_top(mp_lexer_t *lex) { return lex->indent_level[lex->num_indent_level - 1]; } STATIC void indent_pop(mp_lexer_t *lex) { lex->num_indent_level -= 1; } // some tricky operator encoding: // = begin with , if this opchar matches then begin here // e = end with , if this opchar matches then end // c = continue with , if this opchar matches then continue matching // this means if the start of two ops are the same then they are equal til the last char STATIC const char *const tok_enc = "()[]{},;~" // singles ":e=" // : := " >= >> >>= "*e=c*e=" // * *= ** **= "+e=" // + += "-e=e>" // - -= -> "&e=" // & &= "|e=" // | |= "/e=c/e=" // / /= // //= "%e=" // % %= "^e=" // ^ ^= "@e=" // @ @= "=e=" // = == "!."; // start of special cases: != . ... // TODO static assert that number of tokens is less than 256 so we can safely make this table with byte sized entries STATIC const uint8_t tok_enc_kind[] = { MP_TOKEN_DEL_PAREN_OPEN, MP_TOKEN_DEL_PAREN_CLOSE, MP_TOKEN_DEL_BRACKET_OPEN, MP_TOKEN_DEL_BRACKET_CLOSE, MP_TOKEN_DEL_BRACE_OPEN, MP_TOKEN_DEL_BRACE_CLOSE, MP_TOKEN_DEL_COMMA, MP_TOKEN_DEL_SEMICOLON, MP_TOKEN_OP_TILDE, MP_TOKEN_DEL_COLON, MP_TOKEN_OP_ASSIGN, MP_TOKEN_OP_LESS, MP_TOKEN_OP_LESS_EQUAL, MP_TOKEN_OP_DBL_LESS, MP_TOKEN_DEL_DBL_LESS_EQUAL, MP_TOKEN_OP_MORE, MP_TOKEN_OP_MORE_EQUAL, MP_TOKEN_OP_DBL_MORE, MP_TOKEN_DEL_DBL_MORE_EQUAL, MP_TOKEN_OP_STAR, MP_TOKEN_DEL_STAR_EQUAL, MP_TOKEN_OP_DBL_STAR, MP_TOKEN_DEL_DBL_STAR_EQUAL, MP_TOKEN_OP_PLUS, MP_TOKEN_DEL_PLUS_EQUAL, MP_TOKEN_OP_MINUS, MP_TOKEN_DEL_MINUS_EQUAL, MP_TOKEN_DEL_MINUS_MORE, MP_TOKEN_OP_AMPERSAND, MP_TOKEN_DEL_AMPERSAND_EQUAL, MP_TOKEN_OP_PIPE, MP_TOKEN_DEL_PIPE_EQUAL, MP_TOKEN_OP_SLASH, MP_TOKEN_DEL_SLASH_EQUAL, MP_TOKEN_OP_DBL_SLASH, MP_TOKEN_DEL_DBL_SLASH_EQUAL, MP_TOKEN_OP_PERCENT, MP_TOKEN_DEL_PERCENT_EQUAL, MP_TOKEN_OP_CARET, MP_TOKEN_DEL_CARET_EQUAL, MP_TOKEN_OP_AT, MP_TOKEN_DEL_AT_EQUAL, MP_TOKEN_DEL_EQUAL, MP_TOKEN_OP_DBL_EQUAL, }; // must have the same order as enum in lexer.h // must be sorted according to strcmp STATIC const char *const tok_kw[] = { "False", "None", "True", "__debug__", "and", "as", "assert", #if MICROPY_PY_ASYNC_AWAIT "async", "await", #endif "break", "class", "continue", "def", "del", "elif", "else", "except", "finally", "for", "from", "global", "if", "import", "in", "is", "lambda", "nonlocal", "not", "or", "pass", "raise", "return", "try", "while", "with", "yield", }; // This is called with CUR_CHAR() before first hex digit, and should return with // it pointing to last hex digit // num_digits must be greater than zero STATIC bool get_hex(mp_lexer_t *lex, size_t num_digits, mp_uint_t *result) { mp_uint_t num = 0; while (num_digits-- != 0) { next_char(lex); unichar c = CUR_CHAR(lex); if (!unichar_isxdigit(c)) { return false; } num = (num << 4) + unichar_xdigit_value(c); } *result = num; return true; } STATIC void parse_string_literal(mp_lexer_t *lex, bool is_raw, bool is_fstring) { // get first quoting character char quote_char = '\''; if (is_char(lex, '\"')) { quote_char = '\"'; } next_char(lex); // work out if it's a single or triple quoted literal size_t num_quotes; if (is_char_and(lex, quote_char, quote_char)) { // triple quotes next_char(lex); next_char(lex); num_quotes = 3; } else { // single quotes num_quotes = 1; } size_t n_closing = 0; #if MICROPY_PY_FSTRINGS if (is_fstring) { // assume there's going to be interpolation, so prep the injection data // fstring_args_idx==0 && len(fstring_args)>0 means we're extracting the args. // only when fstring_args_idx>0 will we consume the arg data // note: lex->fstring_args will be empty already (it's reset when finished) vstr_add_str(&lex->fstring_args, ".format("); } #endif while (!is_end(lex) && (num_quotes > 1 || !is_char(lex, '\n')) && n_closing < num_quotes) { if (is_char(lex, quote_char)) { n_closing += 1; vstr_add_char(&lex->vstr, CUR_CHAR(lex)); } else { n_closing = 0; #if MICROPY_PY_FSTRINGS while (is_fstring && is_char(lex, '{')) { next_char(lex); if (is_char(lex, '{')) { // "{{" is passed through unchanged to be handled by str.format vstr_add_byte(&lex->vstr, '{'); next_char(lex); } else { // wrap each argument in (), e.g. // f"{a,b,}, {c}" --> "{}".format((a,b), (c),) vstr_add_byte(&lex->fstring_args, '('); // remember the start of this argument (if we need it for f'{a=}'). size_t i = lex->fstring_args.len; // Extract characters inside the { until the bracket level // is zero and we reach the conversion specifier '!', // format specifier ':', or closing '}'. The conversion // and format specifiers are left unchanged in the format // string to be handled by str.format. // (MicroPython limitation) note: this is completely // unaware of Python syntax and will not handle any // expression containing '}' or ':'. e.g. f'{"}"}' or f' // {foo({})}'. However, detection of the '!' will // specifically ensure that it's followed by [rs] and // then either the format specifier or the closing // brace. This allows the use of e.g. != in expressions. unsigned int nested_bracket_level = 0; while (!is_end(lex) && (nested_bracket_level != 0 || !(is_char_or(lex, ':', '}') || (is_char(lex, '!') && is_char_following_or(lex, 'r', 's') && is_char_following_following_or(lex, ':', '}')))) ) { unichar c = CUR_CHAR(lex); if (c == '[' || c == '{') { nested_bracket_level += 1; } else if (c == ']' || c == '}') { nested_bracket_level -= 1; } // like the default case at the end of this function, stay 8-bit clean vstr_add_byte(&lex->fstring_args, c); next_char(lex); } if (lex->fstring_args.buf[lex->fstring_args.len - 1] == '=') { // if the last character of the arg was '=', then inject "arg=" before the '{'. // f'{a=}' --> 'a={}'.format(a) vstr_add_strn(&lex->vstr, lex->fstring_args.buf + i, lex->fstring_args.len - i); // remove the trailing '=' lex->fstring_args.len--; } // close the paren-wrapped arg to .format(). vstr_add_byte(&lex->fstring_args, ')'); // comma-separate args to .format(). vstr_add_byte(&lex->fstring_args, ','); } vstr_add_byte(&lex->vstr, '{'); } #endif if (is_char(lex, '\\')) { next_char(lex); unichar c = CUR_CHAR(lex); if (is_raw) { // raw strings allow escaping of quotes, but the backslash is also emitted vstr_add_char(&lex->vstr, '\\'); } else { switch (c) { // note: "c" can never be MP_LEXER_EOF because next_char // always inserts a newline at the end of the input stream case '\n': c = MP_LEXER_EOF; break; // backslash escape the newline, just ignore it case '\\': break; case '\'': break; case '"': break; case 'a': c = 0x07; break; case 'b': c = 0x08; break; case 't': c = 0x09; break; case 'n': c = 0x0a; break; case 'v': c = 0x0b; break; case 'f': c = 0x0c; break; case 'r': c = 0x0d; break; case 'u': case 'U': if (lex->tok_kind == MP_TOKEN_BYTES) { // b'\u1234' == b'\\u1234' vstr_add_char(&lex->vstr, '\\'); break; } // Otherwise fall through. MP_FALLTHROUGH case 'x': { mp_uint_t num = 0; if (!get_hex(lex, (c == 'x' ? 2 : c == 'u' ? 4 : 8), &num)) { // not enough hex chars for escape sequence lex->tok_kind = MP_TOKEN_INVALID; } c = num; break; } case 'N': // Supporting '\N{LATIN SMALL LETTER A}' == 'a' would require keeping the // entire Unicode name table in the core. As of Unicode 6.3.0, that's nearly // 3MB of text; even gzip-compressed and with minimal structure, it'll take // roughly half a meg of storage. This form of Unicode escape may be added // later on, but it's definitely not a priority right now. -- CJA 20140607 mp_raise_NotImplementedError(MP_ERROR_TEXT("unicode name escapes")); break; default: if (c >= '0' && c <= '7') { // Octal sequence, 1-3 chars size_t digits = 3; mp_uint_t num = c - '0'; while (is_following_odigit(lex) && --digits != 0) { next_char(lex); num = num * 8 + (CUR_CHAR(lex) - '0'); } c = num; } else { // unrecognised escape character; CPython lets this through verbatim as '\' and then the character vstr_add_char(&lex->vstr, '\\'); } break; } } if (c != MP_LEXER_EOF) { #if MICROPY_PY_BUILTINS_STR_UNICODE if (c < 0x110000 && lex->tok_kind == MP_TOKEN_STRING) { // Valid unicode character in a str object. vstr_add_char(&lex->vstr, c); } else if (c < 0x100 && lex->tok_kind == MP_TOKEN_BYTES) { // Valid byte in a bytes object. vstr_add_byte(&lex->vstr, c); } #else if (c < 0x100) { // Without unicode everything is just added as an 8-bit byte. vstr_add_byte(&lex->vstr, c); } #endif else { // Character out of range; this raises a generic SyntaxError. lex->tok_kind = MP_TOKEN_INVALID; } } } else { // Add the "character" as a byte so that we remain 8-bit clean. // This way, strings are parsed correctly whether or not they contain utf-8 chars. vstr_add_byte(&lex->vstr, CUR_CHAR(lex)); } } next_char(lex); } // check we got the required end quotes if (n_closing < num_quotes) { lex->tok_kind = MP_TOKEN_LONELY_STRING_OPEN; } // cut off the end quotes from the token text vstr_cut_tail_bytes(&lex->vstr, n_closing); } // This function returns whether it has crossed a newline or not. // It therefore always return true if stop_at_newline is true STATIC bool skip_whitespace(mp_lexer_t *lex, bool stop_at_newline) { while (!is_end(lex)) { if (is_physical_newline(lex)) { if (stop_at_newline && lex->nested_bracket_level == 0) { return true; } next_char(lex); } else if (is_whitespace(lex)) { next_char(lex); } else if (is_char(lex, '#')) { next_char(lex); while (!is_end(lex) && !is_physical_newline(lex)) { next_char(lex); } // will return true on next loop } else if (is_char_and(lex, '\\', '\n')) { // line-continuation, so don't return true next_char(lex); next_char(lex); } else { break; } } return false; } void mp_lexer_to_next(mp_lexer_t *lex) { #if MICROPY_PY_FSTRINGS if (lex->fstring_args.len && lex->fstring_args_idx == 0) { // moving onto the next token means the literal string is complete. // switch into injecting the format args. vstr_add_byte(&lex->fstring_args, ')'); lex->chr0_saved = lex->chr0; lex->chr1_saved = lex->chr1; lex->chr2_saved = lex->chr2; lex->chr0 = lex->fstring_args.buf[0]; lex->chr1 = lex->fstring_args.buf[1]; lex->chr2 = lex->fstring_args.buf[2]; // we've already extracted 3 chars, but setting this non-zero also // means we'll start consuming the fstring data lex->fstring_args_idx = 3; } #endif // start new token text vstr_reset(&lex->vstr); // skip white space and comments // set the newline tokens at the line and column of the preceding line: // only advance on the pointer until a new line is crossed, save the // line and column, and then readvance it bool had_physical_newline = skip_whitespace(lex, true); // set token source information lex->tok_line = lex->line; lex->tok_column = lex->column; if (lex->emit_dent < 0) { lex->tok_kind = MP_TOKEN_DEDENT; lex->emit_dent += 1; } else if (lex->emit_dent > 0) { lex->tok_kind = MP_TOKEN_INDENT; lex->emit_dent -= 1; } else if (had_physical_newline) { // The cursor is at the end of the previous line, pointing to a // physical newline. Skip any remaining whitespace, comments, and // newlines. skip_whitespace(lex, false); lex->tok_kind = MP_TOKEN_NEWLINE; size_t num_spaces = lex->column - 1; if (num_spaces == indent_top(lex)) { } else if (num_spaces > indent_top(lex)) { indent_push(lex, num_spaces); lex->emit_dent += 1; } else { while (num_spaces < indent_top(lex)) { indent_pop(lex); lex->emit_dent -= 1; } if (num_spaces != indent_top(lex)) { lex->tok_kind = MP_TOKEN_DEDENT_MISMATCH; } } } else if (is_end(lex)) { lex->tok_kind = MP_TOKEN_END; } else if (is_string_or_bytes(lex)) { // a string or bytes literal // Python requires adjacent string/bytes literals to be automatically // concatenated. We do it here in the tokeniser to make efficient use of RAM, // because then the lexer's vstr can be used to accumulate the string literal, // in contrast to creating a parse tree of strings and then joining them later // in the compiler. It's also more compact in code size to do it here. // MP_TOKEN_END is used to indicate that this is the first string token lex->tok_kind = MP_TOKEN_END; // Loop to accumulate string/bytes literals do { // parse type codes bool is_raw = false; bool is_fstring = false; mp_token_kind_t kind = MP_TOKEN_STRING; int n_char = 0; if (is_char(lex, 'u')) { n_char = 1; } else if (is_char(lex, 'b')) { kind = MP_TOKEN_BYTES; n_char = 1; if (is_char_following(lex, 'r')) { is_raw = true; n_char = 2; } } else if (is_char(lex, 'r')) { is_raw = true; n_char = 1; if (is_char_following(lex, 'b')) { kind = MP_TOKEN_BYTES; n_char = 2; } #if MICROPY_PY_FSTRINGS if (is_char_following(lex, 'f')) { // raw-f-strings unsupported, immediately return (invalid) token. lex->tok_kind = MP_TOKEN_FSTRING_RAW; break; } #endif } #if MICROPY_PY_FSTRINGS else if (is_char(lex, 'f')) { if (is_char_following(lex, 'r')) { // raw-f-strings unsupported, immediately return (invalid) token. lex->tok_kind = MP_TOKEN_FSTRING_RAW; break; } n_char = 1; is_fstring = true; } #endif // Set or check token kind if (lex->tok_kind == MP_TOKEN_END) { lex->tok_kind = kind; } else if (lex->tok_kind != kind) { // Can't concatenate string with bytes break; } // Skip any type code characters if (n_char != 0) { next_char(lex); if (n_char == 2) { next_char(lex); } } // Parse the literal parse_string_literal(lex, is_raw, is_fstring); // Skip whitespace so we can check if there's another string following skip_whitespace(lex, true); } while (is_string_or_bytes(lex)); } else if (is_head_of_identifier(lex)) { lex->tok_kind = MP_TOKEN_NAME; // get first char (add as byte to remain 8-bit clean and support utf-8) vstr_add_byte(&lex->vstr, CUR_CHAR(lex)); next_char(lex); // get tail chars while (!is_end(lex) && is_tail_of_identifier(lex)) { vstr_add_byte(&lex->vstr, CUR_CHAR(lex)); next_char(lex); } // Check if the name is a keyword. // We also check for __debug__ here and convert it to its value. This is // so the parser gives a syntax error on, eg, x.__debug__. Otherwise, we // need to check for this special token in many places in the compiler. const char *s = vstr_null_terminated_str(&lex->vstr); for (size_t i = 0; i < MP_ARRAY_SIZE(tok_kw); i++) { int cmp = strcmp(s, tok_kw[i]); if (cmp == 0) { lex->tok_kind = MP_TOKEN_KW_FALSE + i; if (lex->tok_kind == MP_TOKEN_KW___DEBUG__) { lex->tok_kind = (MP_STATE_VM(mp_optimise_value) == 0 ? MP_TOKEN_KW_TRUE : MP_TOKEN_KW_FALSE); } break; } else if (cmp < 0) { // Table is sorted and comparison was less-than, so stop searching break; } } } else if (is_digit(lex) || (is_char(lex, '.') && is_following_digit(lex))) { bool forced_integer = false; if (is_char(lex, '.')) { lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG; } else { lex->tok_kind = MP_TOKEN_INTEGER; if (is_char(lex, '0') && is_following_base_char(lex)) { forced_integer = true; } } // get first char vstr_add_char(&lex->vstr, CUR_CHAR(lex)); next_char(lex); // get tail chars while (!is_end(lex)) { if (!forced_integer && is_char_or(lex, 'e', 'E')) { lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG; vstr_add_char(&lex->vstr, 'e'); next_char(lex); if (is_char(lex, '+') || is_char(lex, '-')) { vstr_add_char(&lex->vstr, CUR_CHAR(lex)); next_char(lex); } } else if (is_letter(lex) || is_digit(lex) || is_char(lex, '.')) { if (is_char_or3(lex, '.', 'j', 'J')) { lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG; } vstr_add_char(&lex->vstr, CUR_CHAR(lex)); next_char(lex); } else if (is_char(lex, '_')) { next_char(lex); } else { break; } } } else { // search for encoded delimiter or operator const char *t = tok_enc; size_t tok_enc_index = 0; for (; *t != 0 && !is_char(lex, *t); t += 1) { if (*t == 'e' || *t == 'c') { t += 1; } tok_enc_index += 1; } next_char(lex); if (*t == 0) { // didn't match any delimiter or operator characters lex->tok_kind = MP_TOKEN_INVALID; } else if (*t == '!') { // "!=" is a special case because "!" is not a valid operator if (is_char(lex, '=')) { next_char(lex); lex->tok_kind = MP_TOKEN_OP_NOT_EQUAL; } else { lex->tok_kind = MP_TOKEN_INVALID; } } else if (*t == '.') { // "." and "..." are special cases because ".." is not a valid operator if (is_char_and(lex, '.', '.')) { next_char(lex); next_char(lex); lex->tok_kind = MP_TOKEN_ELLIPSIS; } else { lex->tok_kind = MP_TOKEN_DEL_PERIOD; } } else { // matched a delimiter or operator character // get the maximum characters for a valid token t += 1; size_t t_index = tok_enc_index; while (*t == 'c' || *t == 'e') { t_index += 1; if (is_char(lex, t[1])) { next_char(lex); tok_enc_index = t_index; if (*t == 'e') { break; } } else if (*t == 'c') { break; } t += 2; } // set token kind lex->tok_kind = tok_enc_kind[tok_enc_index]; // compute bracket level for implicit line joining if (lex->tok_kind == MP_TOKEN_DEL_PAREN_OPEN || lex->tok_kind == MP_TOKEN_DEL_BRACKET_OPEN || lex->tok_kind == MP_TOKEN_DEL_BRACE_OPEN) { lex->nested_bracket_level += 1; } else if (lex->tok_kind == MP_TOKEN_DEL_PAREN_CLOSE || lex->tok_kind == MP_TOKEN_DEL_BRACKET_CLOSE || lex->tok_kind == MP_TOKEN_DEL_BRACE_CLOSE) { lex->nested_bracket_level -= 1; } } } } mp_lexer_t *mp_lexer_new(qstr src_name, mp_reader_t reader) { mp_lexer_t *lex = m_new_obj(mp_lexer_t); lex->source_name = src_name; lex->reader = reader; lex->line = 1; lex->column = (size_t)-2; // account for 3 dummy bytes lex->emit_dent = 0; lex->nested_bracket_level = 0; lex->alloc_indent_level = MICROPY_ALLOC_LEXER_INDENT_INIT; lex->num_indent_level = 1; lex->indent_level = m_new(uint16_t, lex->alloc_indent_level); vstr_init(&lex->vstr, 32); #if MICROPY_PY_FSTRINGS vstr_init(&lex->fstring_args, 0); lex->fstring_args_idx = 0; #endif // store sentinel for first indentation level lex->indent_level[0] = 0; // load lexer with start of file, advancing lex->column to 1 // start with dummy bytes and use next_char() for proper EOL/EOF handling lex->chr0 = lex->chr1 = lex->chr2 = 0; next_char(lex); next_char(lex); next_char(lex); // preload first token mp_lexer_to_next(lex); // Check that the first token is in the first column unless it is a // newline. Otherwise we convert the token kind to INDENT so that // the parser gives a syntax error. if (lex->tok_column != 1 && lex->tok_kind != MP_TOKEN_NEWLINE) { lex->tok_kind = MP_TOKEN_INDENT; } return lex; } mp_lexer_t *mp_lexer_new_from_str_len(qstr src_name, const char *str, size_t len, size_t free_len) { mp_reader_t reader; mp_reader_new_mem(&reader, (const byte *)str, len, free_len); return mp_lexer_new(src_name, reader); } #if MICROPY_READER_POSIX || MICROPY_READER_VFS mp_lexer_t *mp_lexer_new_from_file(qstr filename) { mp_reader_t reader; mp_reader_new_file(&reader, filename); return mp_lexer_new(filename, reader); } #if MICROPY_HELPER_LEXER_UNIX mp_lexer_t *mp_lexer_new_from_fd(qstr filename, int fd, bool close_fd) { mp_reader_t reader; mp_reader_new_file_from_fd(&reader, fd, close_fd); return mp_lexer_new(filename, reader); } #endif #endif void mp_lexer_free(mp_lexer_t *lex) { if (lex) { lex->reader.close(lex->reader.data); vstr_clear(&lex->vstr); #if MICROPY_PY_FSTRINGS vstr_clear(&lex->fstring_args); #endif m_del(uint16_t, lex->indent_level, lex->alloc_indent_level); m_del_obj(mp_lexer_t, lex); } } #if 0 // This function is used to print the current token and should only be // needed to debug the lexer, so it's not available via a config option. void mp_lexer_show_token(const mp_lexer_t *lex) { printf("(" UINT_FMT ":" UINT_FMT ") kind:%u str:%p len:%zu", lex->tok_line, lex->tok_column, lex->tok_kind, lex->vstr.buf, lex->vstr.len); if (lex->vstr.len > 0) { const byte *i = (const byte *)lex->vstr.buf; const byte *j = (const byte *)i + lex->vstr.len; printf(" "); while (i < j) { unichar c = utf8_get_char(i); i = utf8_next_char(i); if (unichar_isprint(c)) { printf("%c", (int)c); } else { printf("?"); } } } printf("\n"); } #endif #endif // MICROPY_ENABLE_COMPILER