/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/parsenumbase.h" #include "py/parsenum.h" #include "py/smallint.h" #if MICROPY_PY_BUILTINS_FLOAT #include #endif STATIC NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) { // if lex!=NULL then the parser called us and we need to convert the // exception's type from ValueError to SyntaxError and add traceback info if (lex != NULL) { ((mp_obj_base_t *)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError; mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull); } nlr_raise(exc); } mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) { const byte *restrict str = (const byte *)str_; const byte *restrict top = str + len; bool neg = false; mp_obj_t ret_val; // check radix base if ((base != 0 && base < 2) || base > 36) { // this won't be reached if lex!=NULL mp_raise_ValueError(MP_ERROR_TEXT("int() arg 2 must be >= 2 and <= 36")); } // skip leading space for (; str < top && unichar_isspace(*str); str++) { } // parse optional sign if (str < top) { if (*str == '+') { str++; } else if (*str == '-') { str++; neg = true; } } // parse optional base prefix str += mp_parse_num_base((const char *)str, top - str, &base); // string should be an integer number mp_int_t int_val = 0; const byte *restrict str_val_start = str; for (; str < top; str++) { // get next digit as a value mp_uint_t dig = *str; if ('0' <= dig && dig <= '9') { dig -= '0'; } else if (dig == '_') { continue; } else { dig |= 0x20; // make digit lower-case if ('a' <= dig && dig <= 'z') { dig -= 'a' - 10; } else { // unknown character break; } } if (dig >= (mp_uint_t)base) { break; } // add next digi and check for overflow if (mp_small_int_mul_overflow(int_val, base)) { goto overflow; } int_val = int_val * base + dig; if (!MP_SMALL_INT_FITS(int_val)) { goto overflow; } } // negate value if needed if (neg) { int_val = -int_val; } // create the small int ret_val = MP_OBJ_NEW_SMALL_INT(int_val); have_ret_val: // check we parsed something if (str == str_val_start) { goto value_error; } // skip trailing space for (; str < top && unichar_isspace(*str); str++) { } // check we reached the end of the string if (str != top) { goto value_error; } // return the object return ret_val; overflow: // reparse using long int { const char *s2 = (const char *)str_val_start; ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base); str = (const byte *)s2; goto have_ret_val; } value_error: { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for integer")); raise_exc(exc, lex); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for integer with base %d"), base); raise_exc(exc, lex); #else vstr_t vstr; mp_print_t print; vstr_init_print(&vstr, 50, &print); mp_printf(&print, "invalid syntax for integer with base %d: ", base); mp_str_print_quoted(&print, str_val_start, top - str_val_start, true); mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError, mp_obj_new_str_from_utf8_vstr(&vstr)); raise_exc(exc, lex); #endif } } enum { REAL_IMAG_STATE_START = 0, REAL_IMAG_STATE_HAVE_REAL = 1, REAL_IMAG_STATE_HAVE_IMAG = 2, }; typedef enum { PARSE_DEC_IN_INTG, PARSE_DEC_IN_FRAC, PARSE_DEC_IN_EXP, } parse_dec_in_t; #if MICROPY_PY_BUILTINS_FLOAT // DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing // SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float // EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float // Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n // so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's // exponent). #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT #define DEC_VAL_MAX 1e20F #define SMALL_NORMAL_VAL (1e-37F) #define SMALL_NORMAL_EXP (-37) #define EXACT_POWER_OF_10 (9) #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE #define DEC_VAL_MAX 1e200 #define SMALL_NORMAL_VAL (1e-307) #define SMALL_NORMAL_EXP (-307) #define EXACT_POWER_OF_10 (22) #endif // Break out inner digit accumulation routine to ease trailing zero deferral. static void accept_digit(mp_float_t *p_dec_val, int dig, int *p_exp_extra, int in) { // Core routine to ingest an additional digit. if (*p_dec_val < DEC_VAL_MAX) { // dec_val won't overflow so keep accumulating *p_dec_val = 10 * *p_dec_val + dig; if (in == PARSE_DEC_IN_FRAC) { --(*p_exp_extra); } } else { // dec_val might overflow and we anyway can't represent more digits // of precision, so ignore the digit and just adjust the exponent if (in == PARSE_DEC_IN_INTG) { ++(*p_exp_extra); } } } #endif // MICROPY_PY_BUILTINS_FLOAT #if MICROPY_PY_BUILTINS_COMPLEX mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) #else mp_obj_t mp_parse_num_float(const char *str, size_t len, bool allow_imag, mp_lexer_t *lex) #endif { #if MICROPY_PY_BUILTINS_FLOAT const char *top = str + len; mp_float_t dec_val = 0; bool dec_neg = false; #if MICROPY_PY_BUILTINS_COMPLEX unsigned int real_imag_state = REAL_IMAG_STATE_START; mp_float_t dec_real = 0; parse_start: #endif // skip leading space for (; str < top && unichar_isspace(*str); str++) { } // parse optional sign if (str < top) { if (*str == '+') { str++; } else if (*str == '-') { str++; dec_neg = true; } } const char *str_val_start = str; // determine what the string is if (str < top && (str[0] | 0x20) == 'i') { // string starts with 'i', should be 'inf' or 'infinity' (case insensitive) if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') { // inf str += 3; dec_val = (mp_float_t)INFINITY; if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') { // infinity str += 5; } } } else if (str < top && (str[0] | 0x20) == 'n') { // string starts with 'n', should be 'nan' (case insensitive) if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') { // NaN str += 3; dec_val = MICROPY_FLOAT_C_FUN(nan)(""); } } else { // string should be a decimal number parse_dec_in_t in = PARSE_DEC_IN_INTG; bool exp_neg = false; int exp_val = 0; int exp_extra = 0; int trailing_zeros_intg = 0, trailing_zeros_frac = 0; while (str < top) { unsigned int dig = *str++; if ('0' <= dig && dig <= '9') { dig -= '0'; if (in == PARSE_DEC_IN_EXP) { // don't overflow exp_val when adding next digit, instead just truncate // it and the resulting float will still be correct, either inf or 0.0 // (use INT_MAX/2 to allow adding exp_extra at the end without overflow) if (exp_val < (INT_MAX / 2 - 9) / 10) { exp_val = 10 * exp_val + dig; } } else { if (dig == 0 || dec_val >= DEC_VAL_MAX) { // Defer treatment of zeros in fractional part. If nothing comes afterwards, ignore them. // Also, once we reach DEC_VAL_MAX, treat every additional digit as a trailing zero. if (in == PARSE_DEC_IN_INTG) { ++trailing_zeros_intg; } else { ++trailing_zeros_frac; } } else { // Time to un-defer any trailing zeros. Intg zeros first. while (trailing_zeros_intg) { accept_digit(&dec_val, 0, &exp_extra, PARSE_DEC_IN_INTG); --trailing_zeros_intg; } while (trailing_zeros_frac) { accept_digit(&dec_val, 0, &exp_extra, PARSE_DEC_IN_FRAC); --trailing_zeros_frac; } accept_digit(&dec_val, dig, &exp_extra, in); } } } else if (in == PARSE_DEC_IN_INTG && dig == '.') { in = PARSE_DEC_IN_FRAC; } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) { in = PARSE_DEC_IN_EXP; if (str < top) { if (str[0] == '+') { str++; } else if (str[0] == '-') { str++; exp_neg = true; } } if (str == top) { goto value_error; } } else if (dig == '_') { continue; } else { // unknown character str--; break; } } // work out the exponent if (exp_neg) { exp_val = -exp_val; } // apply the exponent, making sure it's not a subnormal value exp_val += exp_extra + trailing_zeros_intg; if (exp_val < SMALL_NORMAL_EXP) { exp_val -= SMALL_NORMAL_EXP; dec_val *= SMALL_NORMAL_VAL; } // At this point, we need to multiply the mantissa by its base 10 exponent. If possible, // we would rather manipulate numbers that have an exact representation in IEEE754. It // turns out small positive powers of 10 do, whereas small negative powers of 10 don't. // So in that case, we'll yield a division of exact values rather than a multiplication // of slightly erroneous values. if (exp_val < 0 && exp_val >= -EXACT_POWER_OF_10) { dec_val /= MICROPY_FLOAT_C_FUN(pow)(10, -exp_val); } else { dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val); } } if (allow_imag && str < top && (*str | 0x20) == 'j') { #if MICROPY_PY_BUILTINS_COMPLEX if (str == str_val_start) { // Convert "j" to "1j". dec_val = 1; } ++str; real_imag_state |= REAL_IMAG_STATE_HAVE_IMAG; #else raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("complex values not supported")), lex); #endif } // negate value if needed if (dec_neg) { dec_val = -dec_val; } // check we parsed something if (str == str_val_start) { goto value_error; } // skip trailing space for (; str < top && unichar_isspace(*str); str++) { } // check we reached the end of the string if (str != top) { #if MICROPY_PY_BUILTINS_COMPLEX if (force_complex && real_imag_state == REAL_IMAG_STATE_START) { // If we've only seen a real so far, keep parsing for the imaginary part. dec_real = dec_val; dec_val = 0; real_imag_state |= REAL_IMAG_STATE_HAVE_REAL; goto parse_start; } #endif goto value_error; } #if MICROPY_PY_BUILTINS_COMPLEX if (real_imag_state == REAL_IMAG_STATE_HAVE_REAL) { // We're on the second part, but didn't get the expected imaginary number. goto value_error; } #endif // return the object #if MICROPY_PY_BUILTINS_COMPLEX if (real_imag_state != REAL_IMAG_STATE_START) { return mp_obj_new_complex(dec_real, dec_val); } else if (force_complex) { return mp_obj_new_complex(dec_val, 0); } #endif return mp_obj_new_float(dec_val); value_error: raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for number")), lex); #else raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("decimal numbers not supported")), lex); #endif }