/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mpstate.h" #include "py/qstr.h" #include "py/gc.h" #include "py/runtime.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // A qstr is an index into the qstr pool. // The data for a qstr is \0 terminated (so they can be printed using printf) #define Q_HASH_MASK ((1 << (8 * MICROPY_QSTR_BYTES_IN_HASH)) - 1) #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL #define QSTR_ENTER() mp_thread_mutex_lock(&MP_STATE_VM(qstr_mutex), 1) #define QSTR_EXIT() mp_thread_mutex_unlock(&MP_STATE_VM(qstr_mutex)) #else #define QSTR_ENTER() #define QSTR_EXIT() #endif // Initial number of entries for qstr pool, set so that the first dynamically // allocated pool is twice this size. The value here must be <= MP_QSTRnumber_of. #define MICROPY_ALLOC_QSTR_ENTRIES_INIT (10) // this must match the equivalent function in makeqstrdata.py size_t qstr_compute_hash(const byte *data, size_t len) { // djb2 algorithm; see http://www.cse.yorku.ca/~oz/hash.html size_t hash = 5381; for (const byte *top = data + len; data < top; data++) { hash = ((hash << 5) + hash) ^ (*data); // hash * 33 ^ data } hash &= Q_HASH_MASK; // Make sure that valid hash is never zero, zero means "hash not computed" if (hash == 0) { hash++; } return hash; } // The first pool is the static qstr table. The contents must remain stable as // it is part of the .mpy ABI. See the top of py/persistentcode.c and // static_qstr_list in makeqstrdata.py. This pool is unsorted (although in a // future .mpy version we could re-order them and make it sorted). It also // contains additional qstrs that must have IDs <256, see operator_qstr_list // in makeqstrdata.py. const qstr_hash_t mp_qstr_const_hashes_static[] = { #ifndef NO_QSTR #define QDEF0(id, hash, len, str) hash, #define QDEF1(id, hash, len, str) #include "genhdr/qstrdefs.generated.h" #undef QDEF0 #undef QDEF1 #endif }; const qstr_len_t mp_qstr_const_lengths_static[] = { #ifndef NO_QSTR #define QDEF0(id, hash, len, str) len, #define QDEF1(id, hash, len, str) #include "genhdr/qstrdefs.generated.h" #undef QDEF0 #undef QDEF1 #endif }; const qstr_pool_t mp_qstr_const_pool_static = { NULL, // no previous pool 0, // no previous pool false, // is_sorted MICROPY_ALLOC_QSTR_ENTRIES_INIT, MP_QSTRnumber_of_static, // corresponds to number of strings in array just below (qstr_hash_t *)mp_qstr_const_hashes_static, (qstr_len_t *)mp_qstr_const_lengths_static, { #ifndef NO_QSTR #define QDEF0(id, hash, len, str) str, #define QDEF1(id, hash, len, str) #include "genhdr/qstrdefs.generated.h" #undef QDEF0 #undef QDEF1 #endif }, }; // The next pool is the remainder of the qstrs defined in the firmware. This // is sorted. const qstr_hash_t mp_qstr_const_hashes[] = { #ifndef NO_QSTR #define QDEF0(id, hash, len, str) #define QDEF1(id, hash, len, str) hash, #include "genhdr/qstrdefs.generated.h" #undef QDEF0 #undef QDEF1 #endif }; const qstr_len_t mp_qstr_const_lengths[] = { #ifndef NO_QSTR #define QDEF0(id, hash, len, str) #define QDEF1(id, hash, len, str) len, #include "genhdr/qstrdefs.generated.h" #undef QDEF0 #undef QDEF1 #endif }; const qstr_pool_t mp_qstr_const_pool = { &mp_qstr_const_pool_static, MP_QSTRnumber_of_static, true, // is_sorted MICROPY_ALLOC_QSTR_ENTRIES_INIT, MP_QSTRnumber_of - MP_QSTRnumber_of_static, // corresponds to number of strings in array just below (qstr_hash_t *)mp_qstr_const_hashes, (qstr_len_t *)mp_qstr_const_lengths, { #ifndef NO_QSTR #define QDEF0(id, hash, len, str) #define QDEF1(id, hash, len, str) str, #include "genhdr/qstrdefs.generated.h" #undef QDEF0 #undef QDEF1 #endif }, }; // If frozen code is enabled, then there is an additional, sorted, ROM pool // containing additional qstrs required by the frozen code. #ifdef MICROPY_QSTR_EXTRA_POOL extern const qstr_pool_t MICROPY_QSTR_EXTRA_POOL; #define CONST_POOL MICROPY_QSTR_EXTRA_POOL #else #define CONST_POOL mp_qstr_const_pool #endif void qstr_init(void) { MP_STATE_VM(last_pool) = (qstr_pool_t *)&CONST_POOL; // we won't modify the const_pool since it has no allocated room left MP_STATE_VM(qstr_last_chunk) = NULL; #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL mp_thread_mutex_init(&MP_STATE_VM(qstr_mutex)); #endif } STATIC const qstr_pool_t *find_qstr(qstr *q) { // search pool for this qstr // total_prev_len==0 in the final pool, so the loop will always terminate const qstr_pool_t *pool = MP_STATE_VM(last_pool); while (*q < pool->total_prev_len) { pool = pool->prev; } *q -= pool->total_prev_len; assert(*q < pool->len); return pool; } // qstr_mutex must be taken while in this function STATIC qstr qstr_add(mp_uint_t hash, mp_uint_t len, const char *q_ptr) { DEBUG_printf("QSTR: add hash=%d len=%d data=%.*s\n", hash, len, len, q_ptr); // make sure we have room in the pool for a new qstr if (MP_STATE_VM(last_pool)->len >= MP_STATE_VM(last_pool)->alloc) { size_t new_alloc = MP_STATE_VM(last_pool)->alloc * 2; #ifdef MICROPY_QSTR_EXTRA_POOL // Put a lower bound on the allocation size in case the extra qstr pool has few entries new_alloc = MAX(MICROPY_ALLOC_QSTR_ENTRIES_INIT, new_alloc); #endif mp_uint_t pool_size = sizeof(qstr_pool_t) + (sizeof(const char *) + sizeof(qstr_hash_t) + sizeof(qstr_len_t)) * new_alloc; qstr_pool_t *pool = (qstr_pool_t *)m_malloc_maybe(pool_size); if (pool == NULL) { // Keep qstr_last_chunk consistent with qstr_pool_t: qstr_last_chunk is not scanned // at garbage collection since it's reachable from a qstr_pool_t. And the caller of // this function expects q_ptr to be stored in a qstr_pool_t so it can be reached // by the collector. If qstr_pool_t allocation failed, qstr_last_chunk needs to be // NULL'd. Otherwise it may become a dangling pointer at the next garbage collection. MP_STATE_VM(qstr_last_chunk) = NULL; QSTR_EXIT(); m_malloc_fail(new_alloc); } pool->hashes = (qstr_hash_t *)(pool->qstrs + new_alloc); pool->lengths = (qstr_len_t *)(pool->hashes + new_alloc); pool->prev = MP_STATE_VM(last_pool); pool->total_prev_len = MP_STATE_VM(last_pool)->total_prev_len + MP_STATE_VM(last_pool)->len; pool->alloc = new_alloc; pool->len = 0; MP_STATE_VM(last_pool) = pool; DEBUG_printf("QSTR: allocate new pool of size %d\n", MP_STATE_VM(last_pool)->alloc); } // add the new qstr mp_uint_t at = MP_STATE_VM(last_pool)->len; MP_STATE_VM(last_pool)->hashes[at] = hash; MP_STATE_VM(last_pool)->lengths[at] = len; MP_STATE_VM(last_pool)->qstrs[at] = q_ptr; MP_STATE_VM(last_pool)->len++; // return id for the newly-added qstr return MP_STATE_VM(last_pool)->total_prev_len + at; } qstr qstr_find_strn(const char *str, size_t str_len) { if (str_len == 0) { // strncmp behaviour is undefined for str==NULL. return MP_QSTR_; } // work out hash of str size_t str_hash = qstr_compute_hash((const byte *)str, str_len); // search pools for the data for (const qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL; pool = pool->prev) { size_t low = 0; size_t high = pool->len - 1; // binary search inside the pool if (pool->is_sorted) { while (high - low > 1) { size_t mid = (low + high) / 2; int cmp = strncmp(str, pool->qstrs[mid], str_len); if (cmp <= 0) { high = mid; } else { low = mid; } } } // sequential search for the remaining strings for (mp_uint_t at = low; at < high + 1; at++) { if (pool->hashes[at] == str_hash && pool->lengths[at] == str_len && memcmp(pool->qstrs[at], str, str_len) == 0) { return pool->total_prev_len + at; } } } // not found; return null qstr return MP_QSTRnull; } qstr qstr_from_str(const char *str) { return qstr_from_strn(str, strlen(str)); } qstr qstr_from_strn(const char *str, size_t len) { QSTR_ENTER(); qstr q = qstr_find_strn(str, len); if (q == 0) { // qstr does not exist in interned pool so need to add it // check that len is not too big if (len >= (1 << (8 * MICROPY_QSTR_BYTES_IN_LEN))) { QSTR_EXIT(); mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("name too long")); } // compute number of bytes needed to intern this string size_t n_bytes = len + 1; if (MP_STATE_VM(qstr_last_chunk) != NULL && MP_STATE_VM(qstr_last_used) + n_bytes > MP_STATE_VM(qstr_last_alloc)) { // not enough room at end of previously interned string so try to grow char *new_p = m_renew_maybe(char, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_alloc) + n_bytes, false); if (new_p == NULL) { // could not grow existing memory; shrink it to fit previous (void)m_renew_maybe(char, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_used), false); MP_STATE_VM(qstr_last_chunk) = NULL; } else { // could grow existing memory MP_STATE_VM(qstr_last_alloc) += n_bytes; } } if (MP_STATE_VM(qstr_last_chunk) == NULL) { // no existing memory for the interned string so allocate a new chunk size_t al = n_bytes; if (al < MICROPY_ALLOC_QSTR_CHUNK_INIT) { al = MICROPY_ALLOC_QSTR_CHUNK_INIT; } MP_STATE_VM(qstr_last_chunk) = m_new_maybe(char, al); if (MP_STATE_VM(qstr_last_chunk) == NULL) { // failed to allocate a large chunk so try with exact size MP_STATE_VM(qstr_last_chunk) = m_new_maybe(char, n_bytes); if (MP_STATE_VM(qstr_last_chunk) == NULL) { QSTR_EXIT(); m_malloc_fail(n_bytes); } al = n_bytes; } MP_STATE_VM(qstr_last_alloc) = al; MP_STATE_VM(qstr_last_used) = 0; } // allocate memory from the chunk for this new interned string's data char *q_ptr = MP_STATE_VM(qstr_last_chunk) + MP_STATE_VM(qstr_last_used); MP_STATE_VM(qstr_last_used) += n_bytes; // store the interned strings' data size_t hash = qstr_compute_hash((const byte *)str, len); memcpy(q_ptr, str, len); q_ptr[len] = '\0'; q = qstr_add(hash, len, q_ptr); } QSTR_EXIT(); return q; } mp_uint_t qstr_hash(qstr q) { const qstr_pool_t *pool = find_qstr(&q); return pool->hashes[q]; } size_t qstr_len(qstr q) { const qstr_pool_t *pool = find_qstr(&q); return pool->lengths[q]; } const char *qstr_str(qstr q) { const qstr_pool_t *pool = find_qstr(&q); return pool->qstrs[q]; } const byte *qstr_data(qstr q, size_t *len) { const qstr_pool_t *pool = find_qstr(&q); *len = pool->lengths[q]; return (byte *)pool->qstrs[q]; } void qstr_pool_info(size_t *n_pool, size_t *n_qstr, size_t *n_str_data_bytes, size_t *n_total_bytes) { QSTR_ENTER(); *n_pool = 0; *n_qstr = 0; *n_str_data_bytes = 0; *n_total_bytes = 0; for (const qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &CONST_POOL; pool = pool->prev) { *n_pool += 1; *n_qstr += pool->len; for (qstr_len_t *l = pool->lengths, *l_top = pool->lengths + pool->len; l < l_top; l++) { *n_str_data_bytes += *l + 1; } #if MICROPY_ENABLE_GC *n_total_bytes += gc_nbytes(pool); // this counts actual bytes used in heap #else *n_total_bytes += sizeof(qstr_pool_t) + (sizeof(const char *) + sizeof(qstr_hash_t) + sizeof(qstr_len_t)) * pool->alloc; #endif } *n_total_bytes += *n_str_data_bytes; QSTR_EXIT(); } #if MICROPY_PY_MICROPYTHON_MEM_INFO void qstr_dump_data(void) { QSTR_ENTER(); for (const qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &CONST_POOL; pool = pool->prev) { for (const char *const *q = pool->qstrs, *const *q_top = pool->qstrs + pool->len; q < q_top; q++) { mp_printf(&mp_plat_print, "Q(%s)\n", *q); } } QSTR_EXIT(); } #endif #if MICROPY_ROM_TEXT_COMPRESSION #ifdef NO_QSTR // If NO_QSTR is set, it means we're doing QSTR extraction. // So we won't yet have "genhdr/compressed.data.h" #else // Emit the compressed_string_data string. #define MP_COMPRESSED_DATA(x) STATIC const char *compressed_string_data = x; #define MP_MATCH_COMPRESSED(a, b) #include "genhdr/compressed.data.h" #undef MP_COMPRESSED_DATA #undef MP_MATCH_COMPRESSED #endif // NO_QSTR // This implements the "common word" compression scheme (see makecompresseddata.py) where the most // common 128 words in error messages are replaced by their index into the list of common words. // The compressed string data is delimited by setting high bit in the final char of each word. // e.g. aaaa<0x80|a>bbbbbb<0x80|b>.... // This method finds the n'th string. STATIC const byte *find_uncompressed_string(uint8_t n) { const byte *c = (byte *)compressed_string_data; while (n > 0) { while ((*c & 0x80) == 0) { ++c; } ++c; --n; } return c; } // Given a compressed string in src, decompresses it into dst. // dst must be large enough (use MP_MAX_UNCOMPRESSED_TEXT_LEN+1). void mp_decompress_rom_string(byte *dst, const mp_rom_error_text_t src_chr) { // Skip past the 0xff marker. const byte *src = (byte *)src_chr + 1; // Need to add spaces around compressed words, except for the first (i.e. transition from 1<->2). // 0 = start, 1 = compressed, 2 = regular. int state = 0; while (*src) { if ((byte) * src >= 128) { if (state != 0) { *dst++ = ' '; } state = 1; // High bit set, replace with common word. const byte *word = find_uncompressed_string(*src & 0x7f); // The word is terminated by the final char having its high bit set. while ((*word & 0x80) == 0) { *dst++ = *word++; } *dst++ = (*word & 0x7f); } else { // Otherwise just copy one char. if (state == 1) { *dst++ = ' '; } state = 2; *dst++ = *src; } ++src; } // Add null-terminator. *dst = 0; } #endif // MICROPY_ROM_TEXT_COMPRESSION