// Essentially normal Python has 1 type: Python objects // Viper has more than 1 type, and is just a more complicated (a superset of) Python. // If you declare everything in Viper as a Python object (ie omit type decls) then // it should in principle be exactly the same as Python native. // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. // In practice we won't have a VM but rather do this in asm which is actually very minimal. // Because it breaks strict Python equivalence it should be a completely separate // decorator. It breaks equivalence because overflow on integers wraps around. // It shouldn't break equivalence if you don't use the new types, but since the // type decls might be used in normal Python for other reasons, it's probably safest, // cleanest and clearest to make it a separate decorator. // Actually, it does break equivalence because integers default to native integers, // not Python objects. // for x in l[0:8]: can be compiled into a native loop if l has pointer type #include #include #include #include #include #include #include "misc.h" #include "lexer.h" #include "machine.h" #include "parse.h" #include "scope.h" #include "runtime.h" #include "emit.h" // select a machine architecture #if 0 #if defined(EMIT_ENABLE_NATIVE_X64) #define N_X64 #elif defined(EMIT_ENABLE_NATIVE_THUMB) #define N_THUMB #endif #endif // wrapper around everything in this file #if defined(N_X64) || defined(N_THUMB) #if defined(N_X64) // x64 specific stuff #include "asmx64.h" #define REG_LOCAL_1 (REG_RBX) #define REG_LOCAL_NUM (1) #define EXPORT_FUN(name) emit_native_x64_##name #define REG_TEMP0 (REG_RAX) #define REG_TEMP1 (REG_RDI) #define REG_TEMP2 (REG_RSI) #define ASM_MOV_REG_TO_LOCAL(reg, local_num) asm_x64_mov_r64_to_local(emit->as, (reg), (local_num)) #define ASM_MOV_IMM_TO_REG(imm, reg) asm_x64_mov_i64_to_r64_optimised(emit->as, (imm), (reg)) #define ASM_MOV_IMM_TO_LOCAL(imm, local_num) do { asm_x64_mov_i64_to_r64_optimised(emit->as, (imm), REG_RAX); asm_x64_mov_r64_to_local(emit->as, REG_RAX, (local_num)); } while (false) #define ASM_MOV_LOCAL_TO_REG(local_num, reg) asm_x64_mov_local_to_r64(emit->as, (local_num), (reg)) #define ASM_MOV_REG_TO_REG(reg_src, reg_dest) asm_x64_mov_r64_to_r64(emit->as, (reg_src), (reg_dest)) #define ASM_MOV_LOCAL_ADDR_TO_REG(local_num, reg) asm_x64_mov_local_addr_to_r64(emit->as, (local_num), (reg)) #elif defined(N_THUMB) // thumb specific stuff #include "asmthumb.h" #define REG_LOCAL_1 (REG_R4) #define REG_LOCAL_2 (REG_R5) #define REG_LOCAL_3 (REG_R6) #define REG_LOCAL_NUM (3) #define EXPORT_FUN(name) emit_native_thumb_##name #define REG_TEMP0 (REG_R0) #define REG_TEMP1 (REG_R1) #define REG_TEMP2 (REG_R2) #define ASM_MOV_REG_TO_LOCAL(reg, local_num) asm_thumb_mov_local_reg(emit->as, (local_num), (reg)) #define ASM_MOV_IMM_TO_REG(imm, reg) asm_thumb_mov_reg_i32_optimised(emit->as, (reg), (imm)) #define ASM_MOV_IMM_TO_LOCAL(imm, local_num) do { asm_thumb_mov_reg_i32_optimised(emit->as, REG_R0, (imm)); asm_thumb_mov_local_reg(emit->as, (local_num), REG_R0); } while (false) #define ASM_MOV_LOCAL_TO_REG(local_num, reg) asm_thumb_mov_reg_local(emit->as, (reg), (local_num)) #define ASM_MOV_REG_TO_REG(reg_src, reg_dest) asm_thumb_mov_reg_reg(emit->as, (reg_dest), (reg_src)) #define ASM_MOV_LOCAL_ADDR_TO_REG(local_num, reg) asm_thumb_mov_reg_local_addr(emit->as, (reg), (local_num)) #endif typedef enum { NEED_TO_PUSH_NOTHING, NEED_TO_PUSH_REG, NEED_TO_PUSH_IMM, } need_to_push_t; typedef enum { VTYPE_UNBOUND, VTYPE_PYOBJ, VTYPE_BOOL, VTYPE_INT, VTYPE_PTR, VTYPE_PTR_NONE, VTYPE_BUILTIN_V_INT, } vtype_kind_t; struct _emit_t { int pass; bool do_viper_types; int all_vtype_alloc; vtype_kind_t *all_vtype; vtype_kind_t *local_vtype; vtype_kind_t *stack_vtype; int stack_start; int stack_size; bool last_emit_was_return_value; need_to_push_t need_to_push; vtype_kind_t last_vtype; int last_reg; int64_t last_imm; scope_t *scope; #if defined(N_X64) asm_x64_t *as; #elif defined(N_THUMB) asm_thumb_t *as; #endif }; emit_t *EXPORT_FUN(new)(uint max_num_labels) { emit_t *emit = m_new(emit_t, 1); emit->do_viper_types = false; emit->all_vtype = NULL; #if defined(N_X64) emit->as = asm_x64_new(max_num_labels); #elif defined(N_THUMB) emit->as = asm_thumb_new(max_num_labels); #endif return emit; } static void emit_native_set_viper_types(emit_t *emit, bool do_viper_types) { emit->do_viper_types = do_viper_types; } static void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { emit->pass = pass; emit->stack_start = 0; emit->stack_size = 0; emit->last_emit_was_return_value = false; emit->need_to_push = NEED_TO_PUSH_NOTHING; emit->scope = scope; if (emit->all_vtype == NULL) { emit->all_vtype_alloc = scope->num_locals + scope->stack_size + 100; // XXX don't know stack size on entry, should be maximum over all scopes emit->all_vtype = m_new(vtype_kind_t, emit->all_vtype_alloc); emit->local_vtype = emit->all_vtype; emit->stack_vtype = emit->all_vtype + scope->num_locals; } if (emit->do_viper_types) { for (int i = 0; i < emit->all_vtype_alloc; i++) { emit->all_vtype[i] = VTYPE_UNBOUND; } // TODO set types of arguments based on type signature } else { for (int i = 0; i < emit->all_vtype_alloc; i++) { emit->all_vtype[i] = VTYPE_PYOBJ; } } #if defined(N_X64) asm_x64_start_pass(emit->as, pass); #elif defined(N_THUMB) asm_thumb_start_pass(emit->as, pass); #endif // entry to function int num_locals = 0; if (pass > PASS_1) { num_locals = scope->num_locals - REG_LOCAL_NUM; if (num_locals < 0) { num_locals = 0; } emit->stack_start = num_locals; num_locals += scope->stack_size; } #if defined(N_X64) asm_x64_entry(emit->as, num_locals); #elif defined(N_THUMB) asm_thumb_entry(emit->as, num_locals); #endif // initialise locals from parameters #if defined(N_X64) for (int i = 0; i < scope->num_params; i++) { if (i == 0) { asm_x64_mov_r64_to_r64(emit->as, REG_ARG_1, REG_LOCAL_1); } else if (i == 1) { asm_x64_mov_r64_to_local(emit->as, REG_ARG_2, i - 1); } else if (i == 2) { asm_x64_mov_r64_to_local(emit->as, REG_ARG_3, i - 1); } else { // TODO not implemented assert(0); } } #elif defined(N_THUMB) for (int i = 0; i < scope->num_params; i++) { if (i == 0) { asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_1, REG_ARG_1); } else if (i == 1) { asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_2, REG_ARG_2); } else if (i == 2) { asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_3, REG_ARG_3); } else if (i == 3) { asm_thumb_mov_local_reg(emit->as, i - REG_LOCAL_NUM, REG_ARG_4); } else { // TODO not implemented assert(0); } } asm_thumb_mov_reg_i32(emit->as, REG_R7, (machine_uint_t)rt_fun_table); #endif } static void emit_native_end_pass(emit_t *emit) { #if defined(N_X64) if (!emit->last_emit_was_return_value) { asm_x64_exit(emit->as); } asm_x64_end_pass(emit->as); #elif defined(N_THUMB) if (!emit->last_emit_was_return_value) { asm_thumb_exit(emit->as); } asm_thumb_end_pass(emit->as); #endif // check stack is back to zero size if (emit->stack_size != 0) { printf("ERROR: stack size not back to zero; got %d\n", emit->stack_size); } if (emit->pass == PASS_3) { #if defined(N_X64) py_fun_t f = asm_x64_get_code(emit->as); rt_assign_native_code(emit->scope->unique_code_id, f, asm_x64_get_code_size(emit->as), emit->scope->num_params); #elif defined(N_THUMB) py_fun_t f = asm_thumb_get_code(emit->as); rt_assign_native_code(emit->scope->unique_code_id, f, asm_thumb_get_code_size(emit->as), emit->scope->num_params); #endif } } static bool emit_native_last_emit_was_return_value(emit_t *emit) { return emit->last_emit_was_return_value; } static int emit_native_get_stack_size(emit_t *emit) { return emit->stack_size; } static void emit_native_set_stack_size(emit_t *emit, int size) { emit->stack_size = size; } static void adjust_stack(emit_t *emit, int stack_size_delta) { emit->stack_size += stack_size_delta; assert(emit->stack_size >= 0); if (emit->pass > PASS_1 && emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } } static void stack_settle(emit_t *emit) { switch (emit->need_to_push) { case NEED_TO_PUSH_NOTHING: break; case NEED_TO_PUSH_REG: emit->stack_vtype[emit->stack_size] = emit->last_vtype; ASM_MOV_REG_TO_LOCAL(emit->last_reg, emit->stack_start + emit->stack_size); adjust_stack(emit, 1); break; case NEED_TO_PUSH_IMM: emit->stack_vtype[emit->stack_size] = emit->last_vtype; ASM_MOV_IMM_TO_LOCAL(emit->last_imm, emit->stack_start + emit->stack_size); adjust_stack(emit, 1); break; } emit->need_to_push = NEED_TO_PUSH_NOTHING; } static void emit_pre_raw(emit_t *emit, int stack_size_delta) { adjust_stack(emit, stack_size_delta); emit->last_emit_was_return_value = false; } static void emit_pre(emit_t *emit) { stack_settle(emit); emit_pre_raw(emit, 0); } static vtype_kind_t peek_vtype(emit_t *emit) { switch (emit->need_to_push) { case NEED_TO_PUSH_NOTHING: return emit->stack_vtype[emit->stack_size - 1]; case NEED_TO_PUSH_REG: case NEED_TO_PUSH_IMM: return emit->last_vtype; default: assert(0); return VTYPE_UNBOUND; } } static void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { switch (emit->need_to_push) { case NEED_TO_PUSH_NOTHING: *vtype = emit->stack_vtype[emit->stack_size - 1]; ASM_MOV_LOCAL_TO_REG(emit->stack_start + emit->stack_size - 1, reg_dest); emit_pre_raw(emit, -1); break; case NEED_TO_PUSH_REG: emit_pre_raw(emit, 0); *vtype = emit->last_vtype; if (emit->last_reg != reg_dest) { ASM_MOV_REG_TO_REG(emit->last_reg, reg_dest); } break; case NEED_TO_PUSH_IMM: emit_pre_raw(emit, 0); *vtype = emit->last_vtype; ASM_MOV_IMM_TO_REG(emit->last_imm, reg_dest); break; } emit->need_to_push = NEED_TO_PUSH_NOTHING; } static void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { emit_pre_pop_reg(emit, vtypea, rega); *vtypeb = emit->stack_vtype[emit->stack_size - 1]; ASM_MOV_LOCAL_TO_REG(emit->stack_start + emit->stack_size - 1, regb); adjust_stack(emit, -1); } static void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { emit_pre_pop_reg(emit, vtypea, rega); *vtypeb = emit->stack_vtype[emit->stack_size - 1]; *vtypec = emit->stack_vtype[emit->stack_size - 2]; ASM_MOV_LOCAL_TO_REG(emit->stack_start + emit->stack_size - 1, regb); ASM_MOV_LOCAL_TO_REG(emit->stack_start + emit->stack_size - 2, regc); adjust_stack(emit, -2); } static void emit_post(emit_t *emit) { } static void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { emit->need_to_push = NEED_TO_PUSH_REG; emit->last_vtype = vtype; emit->last_reg = reg; } static void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, machine_int_t imm) { emit->need_to_push = NEED_TO_PUSH_IMM; emit->last_vtype = vtype; emit->last_imm = imm; } static void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { emit->stack_vtype[emit->stack_size] = vtypea; ASM_MOV_REG_TO_LOCAL(rega, emit->stack_start + emit->stack_size); emit->need_to_push = NEED_TO_PUSH_REG; emit->last_vtype = vtypeb; emit->last_reg = regb; adjust_stack(emit, 1); } static void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { emit->stack_vtype[emit->stack_size] = vtypea; emit->stack_vtype[emit->stack_size + 1] = vtypeb; emit->stack_vtype[emit->stack_size + 2] = vtypec; ASM_MOV_REG_TO_LOCAL(rega, emit->stack_start + emit->stack_size); ASM_MOV_REG_TO_LOCAL(regb, emit->stack_start + emit->stack_size + 1); ASM_MOV_REG_TO_LOCAL(regc, emit->stack_start + emit->stack_size + 2); adjust_stack(emit, 3); } static void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { emit->stack_vtype[emit->stack_size] = vtypea; emit->stack_vtype[emit->stack_size + 1] = vtypeb; emit->stack_vtype[emit->stack_size + 2] = vtypec; emit->stack_vtype[emit->stack_size + 3] = vtyped; ASM_MOV_REG_TO_LOCAL(rega, emit->stack_start + emit->stack_size); ASM_MOV_REG_TO_LOCAL(regb, emit->stack_start + emit->stack_size + 1); ASM_MOV_REG_TO_LOCAL(regc, emit->stack_start + emit->stack_size + 2); ASM_MOV_REG_TO_LOCAL(regd, emit->stack_start + emit->stack_size + 3); adjust_stack(emit, 4); } // vtype of all n_pop objects is VTYPE_PYOBJ static void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, int reg_dest, int n_pop) { ASM_MOV_LOCAL_ADDR_TO_REG(emit->stack_start + emit->stack_size - 1, reg_dest); adjust_stack(emit, -n_pop); } // vtype of all n_push objects is VTYPE_PYOBJ static void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, int reg_dest, int n_push) { for (int i = 0; i < n_push; i++) { emit->stack_vtype[emit->stack_size + i] = VTYPE_PYOBJ; } ASM_MOV_LOCAL_ADDR_TO_REG(emit->stack_start + emit->stack_size + n_push - 1, reg_dest); adjust_stack(emit, n_push); } static void emit_call(emit_t *emit, rt_fun_kind_t fun_kind, void *fun) { #if defined(N_X64) asm_x64_call_ind(emit->as, fun, REG_RAX); #elif defined(N_THUMB) asm_thumb_bl_ind(emit->as, rt_fun_table[fun_kind], fun_kind, REG_R3); #endif } static void emit_call_with_imm_arg(emit_t *emit, rt_fun_kind_t fun_kind, void *fun, machine_int_t arg_val, int arg_reg) { ASM_MOV_IMM_TO_REG(arg_val, arg_reg); emit_call(emit, fun_kind, fun); } static void emit_native_load_id(emit_t *emit, qstr qstr) { // check for built-ins if (strcmp(qstr_str(qstr), "v_int") == 0) { emit_pre(emit); //emit_post_push_blank(emit, VTYPE_BUILTIN_V_INT); // not a built-in, so do usual thing } else { emit_common_load_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr); } } static void emit_native_store_id(emit_t *emit, qstr qstr) { // TODO check for built-ins and disallow emit_common_store_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr); } static void emit_native_delete_id(emit_t *emit, qstr qstr) { // TODO check for built-ins and disallow emit_common_delete_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr); } static void emit_native_label_assign(emit_t *emit, int l) { #if defined(N_X64) asm_x64_label_assign(emit->as, l); #elif defined(N_THUMB) asm_thumb_label_assign(emit->as, l); #endif } static void emit_native_import_name(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_import_from(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_import_star(emit_t *emit) { // not implemented assert(0); } static void emit_native_load_const_tok(emit_t *emit, py_token_kind_t tok) { emit_pre(emit); int vtype; machine_uint_t val; if (emit->do_viper_types) { switch (tok) { case PY_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break; case PY_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break; case PY_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break; default: assert(0); vtype = 0; val = 0; // shouldn't happen } } else { vtype = VTYPE_PYOBJ; switch (tok) { case PY_TOKEN_KW_NONE: val = (machine_uint_t)py_const_none; break; case PY_TOKEN_KW_FALSE: val = (machine_uint_t)py_const_false; break; case PY_TOKEN_KW_TRUE: val = (machine_uint_t)py_const_true; break; default: assert(0); vtype = 0; val = 0; // shouldn't happen } } emit_post_push_imm(emit, vtype, val); } static void emit_native_load_const_small_int(emit_t *emit, int arg) { emit_pre(emit); if (emit->do_viper_types) { emit_post_push_imm(emit, VTYPE_INT, arg); } else { emit_post_push_imm(emit, VTYPE_PYOBJ, (arg << 1) | 1); } } static void emit_native_load_const_int(emit_t *emit, qstr qstr) { // not implemented // load integer, check fits in 32 bits assert(0); } static void emit_native_load_const_dec(emit_t *emit, qstr qstr) { // not supported for viper (although, could support floats in future) assert(0); } static void emit_native_load_const_id(emit_t *emit, qstr qstr) { // not supported for viper? assert(0); } static void emit_native_load_const_str(emit_t *emit, qstr qstr, bool bytes) { emit_pre(emit); if (emit->do_viper_types) { // not implemented properly // load a pointer to the asciiz string? assert(0); emit_post_push_imm(emit, VTYPE_PTR, (machine_uint_t)qstr_str(qstr)); } else { emit_call_with_imm_arg(emit, RT_F_LOAD_CONST_STR, rt_load_const_str, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } static void emit_native_load_const_verbatim_start(emit_t *emit) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_int(emit_t *emit, int val) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_str(emit_t *emit, const char *str) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_strn(emit_t *emit, const char *str, int len) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_quoted_str(emit_t *emit, qstr qstr, bool bytes) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_end(emit_t *emit) { // not supported/needed for viper assert(0); } static void emit_native_load_fast(emit_t *emit, qstr qstr, int local_num) { vtype_kind_t vtype = emit->local_vtype[local_num]; if (vtype == VTYPE_UNBOUND) { printf("ViperTypeError: local %s used before type known\n", qstr_str(qstr)); } emit_pre(emit); #if defined(N_X64) if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else { asm_x64_mov_local_to_r64(emit->as, local_num - 1, REG_RAX); emit_post_push_reg(emit, vtype, REG_RAX); } #elif defined(N_THUMB) if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { asm_thumb_mov_reg_local(emit->as, REG_R0, local_num - 1); emit_post_push_reg(emit, vtype, REG_R0); } #endif } static void emit_native_load_name(emit_t *emit, qstr qstr) { emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_LOAD_NAME, rt_load_name, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_global(emit_t *emit, qstr qstr) { emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_LOAD_GLOBAL, rt_load_global, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_deref(emit_t *emit, qstr qstr) { // not implemented // in principle could support this quite easily (ldr r0, [r0, #0]) and then get closed over variables! assert(0); } static void emit_native_load_closure(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_load_attr(emit_t *emit, qstr qstr) { // depends on type of subject: // - integer, function, pointer to integers: error // - pointer to structure: get member, quite easy // - Python object: call rt_load_attr, and needs to be typed to convert result vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_LOAD_ATTR, rt_load_attr, qstr, REG_ARG_2); // arg2 = attribute name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_method(emit_t *emit, qstr qstr) { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_imm_arg(emit, RT_F_LOAD_METHOD, rt_load_method, qstr, REG_ARG_2); // arg2 = method name } static void emit_native_load_build_class(emit_t *emit) { // not supported assert(0); } static void emit_native_store_fast(emit_t *emit, qstr qstr, int local_num) { vtype_kind_t vtype; #if defined(N_X64) if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else { emit_pre_pop_reg(emit, &vtype, REG_RAX); asm_x64_mov_r64_to_local(emit->as, REG_RAX, local_num - 1); } #elif defined(N_THUMB) if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_R0); asm_thumb_mov_local_reg(emit->as, local_num - 1, REG_R0); } #endif emit_post(emit); // check types if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { // first time this local is assigned, so give it a type of the object stored in it emit->local_vtype[local_num] = vtype; } else if (emit->local_vtype[local_num] != vtype) { // type of local is not the same as object stored in it printf("ViperTypeError: type mismatch, local %s has type %d but source object has type %d\n", qstr_str(qstr), emit->local_vtype[local_num], vtype); } } static void emit_native_store_name(emit_t *emit, qstr qstr) { // rt_store_name, but needs conversion of object (maybe have rt_viper_store_name(obj, type)) vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_STORE_NAME, rt_store_name, qstr, REG_ARG_1); // arg1 = name emit_post(emit); } static void emit_native_store_global(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_store_deref(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_store_attr(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_store_locals(emit_t *emit) { // not supported assert(0); } static void emit_native_store_subscr(emit_t *emit) { // depends on type of subject: // - integer, function, pointer to structure: error // - pointer to integers: store as per array // - Python object: call runtime with converted object or type info vtype_kind_t vtype_index, vtype_base, vtype_value; emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); // index, base, value to store assert(vtype_index == VTYPE_PYOBJ); assert(vtype_base == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); emit_call(emit, RT_F_STORE_SUBSCR, rt_store_subscr); } static void emit_native_delete_fast(emit_t *emit, qstr qstr, int local_num) { // not implemented // could support for Python types, just set to None (so GC can reclaim it) assert(0); } static void emit_native_delete_name(emit_t *emit, qstr qstr) { // not implemented // use rt_delete_name assert(0); } static void emit_native_delete_global(emit_t *emit, qstr qstr) { // not implemented // use rt_delete_global assert(0); } static void emit_native_delete_deref(emit_t *emit, qstr qstr) { // not supported assert(0); } static void emit_native_delete_attr(emit_t *emit, qstr qstr) { // not supported assert(0); } static void emit_native_delete_subscr(emit_t *emit) { // not supported assert(0); } static void emit_native_dup_top(emit_t *emit) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_TEMP0); emit_post_push_reg_reg(emit, vtype, REG_TEMP0, vtype, REG_TEMP0); } static void emit_native_dup_top_two(emit_t *emit) { vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); } static void emit_native_pop_top(emit_t *emit) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_TEMP0); emit_post(emit); } static void emit_native_rot_two(emit_t *emit) { assert(0); } static void emit_native_rot_three(emit_t *emit) { vtype_kind_t vtype0, vtype1, vtype2; emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); } static void emit_native_jump(emit_t *emit, int label) { emit_pre(emit); #if defined(N_X64) asm_x64_jmp_label(emit->as, label); #elif defined(N_THUMB) asm_thumb_b_label(emit->as, label); #endif emit_post(emit); } static void emit_native_pop_jump_if_false(emit_t *emit, int label) { vtype_kind_t vtype = peek_vtype(emit); if (vtype == VTYPE_BOOL) { emit_pre_pop_reg(emit, &vtype, REG_RET); } else if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_call(emit, RT_F_IS_TRUE, rt_is_true); } else { printf("ViperTypeError: expecting a bool or pyobj, got %d\n", vtype); assert(0); } #if defined(N_X64) asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET); asm_x64_jcc_label(emit->as, JCC_JZ, label); #elif defined(N_THUMB) asm_thumb_cmp_reg_bz_label(emit->as, REG_RET, label); #endif emit_post(emit); } static void emit_native_pop_jump_if_true(emit_t *emit, int label) { assert(0); } static void emit_native_jump_if_true_or_pop(emit_t *emit, int label) { assert(0); } static void emit_native_jump_if_false_or_pop(emit_t *emit, int label) { assert(0); } static void emit_native_setup_loop(emit_t *emit, int label) { emit_pre(emit); emit_post(emit); } static void emit_native_break_loop(emit_t *emit, int label) { assert(0); } static void emit_native_continue_loop(emit_t *emit, int label) { assert(0); } static void emit_native_setup_with(emit_t *emit, int label) { // not supported, or could be with runtime call assert(0); } static void emit_native_with_cleanup(emit_t *emit) { assert(0); } static void emit_native_setup_except(emit_t *emit, int label) { assert(0); } static void emit_native_setup_finally(emit_t *emit, int label) { assert(0); } static void emit_native_end_finally(emit_t *emit) { assert(0); } static void emit_native_get_iter(emit_t *emit) { // perhaps the difficult one, as we want to rewrite for loops using native code // in cases where we iterate over a Python object, can we use normal runtime calls? assert(0); } // tos = getiter(tos) static void emit_native_for_iter(emit_t *emit, int label) { assert(0); } static void emit_native_for_iter_end(emit_t *emit) { assert(0); } static void emit_native_pop_block(emit_t *emit) { emit_pre(emit); emit_post(emit); } static void emit_native_pop_except(emit_t *emit) { assert(0); } static void emit_native_unary_op(emit_t *emit, rt_unary_op_t op) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_UNARY_OP, rt_unary_op, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_binary_op(emit_t *emit, rt_binary_op_t op) { vtype_kind_t vtype_lhs, vtype_rhs; emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) { assert(op == RT_BINARY_OP_ADD); #if defined(N_X64) asm_x64_add_r64_to_r64(emit->as, REG_ARG_3, REG_ARG_2); #elif defined(N_THUMB) asm_thumb_add_reg_reg_reg(emit->as, REG_ARG_2, REG_ARG_2, REG_ARG_3); #endif emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, RT_F_BINARY_OP, rt_binary_op, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { printf("ViperTypeError: can't do binary op between types %d and %d\n", vtype_lhs, vtype_rhs); assert(0); } } static void emit_native_compare_op(emit_t *emit, rt_compare_op_t op) { vtype_kind_t vtype_lhs, vtype_rhs; emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) { assert(op == RT_COMPARE_OP_LESS); #if defined(N_X64) asm_x64_xor_r64_to_r64(emit->as, REG_RET, REG_RET); asm_x64_cmp_r64_with_r64(emit->as, REG_ARG_3, REG_ARG_2); asm_x64_setcc_r8(emit->as, JCC_JL, REG_RET); #elif defined(N_THUMB) asm_thumb_cmp_reg_reg(emit->as, REG_ARG_2, REG_ARG_3); asm_thumb_ite_ge(emit->as); asm_thumb_movs_rlo_i8(emit->as, REG_RET, 0); // if r0 >= r1 asm_thumb_movs_rlo_i8(emit->as, REG_RET, 1); // if r0 < r1 #endif emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, RT_F_COMPARE_OP, rt_compare_op, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { printf("ViperTypeError: can't do comparison between types %d and %d\n", vtype_lhs, vtype_rhs); assert(0); } } static void emit_native_build_tuple(emit_t *emit, int n_args) { // call runtime, with types of args // if wrapped in byte_array, or something, allocates memory and fills it assert(0); } static void emit_native_build_list(emit_t *emit, int n_args) { emit_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items in reverse order emit_call_with_imm_arg(emit, RT_F_BUILD_LIST, rt_build_list, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new list } static void emit_native_list_append(emit_t *emit, int list_index) { // only used in list comprehension, so call runtime assert(0); } static void emit_native_build_map(emit_t *emit, int n_args) { emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_BUILD_MAP, rt_build_map, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new map } static void emit_native_store_map(emit_t *emit) { vtype_kind_t vtype_key, vtype_value, vtype_map; emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); assert(vtype_map == VTYPE_PYOBJ); emit_call(emit, RT_F_STORE_MAP, rt_store_map); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map } static void emit_native_map_add(emit_t *emit, int map_index) { assert(0); } static void emit_native_build_set(emit_t *emit, int n_args) { emit_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items in reverse order emit_call_with_imm_arg(emit, RT_F_BUILD_SET, rt_build_set, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set } static void emit_native_set_add(emit_t *emit, int set_index) { assert(0); } static void emit_native_build_slice(emit_t *emit, int n_args) { assert(0); } static void emit_native_unpack_sequence(emit_t *emit, int n_args) { // call runtime, needs type decl assert(0); } static void emit_native_unpack_ex(emit_t *emit, int n_left, int n_right) { assert(0); } static void emit_native_make_function(emit_t *emit, scope_t *scope, int n_dict_params, int n_default_params) { // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them assert(n_default_params == 0 && n_dict_params == 0); emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_MAKE_FUNCTION_FROM_ID, rt_make_function_from_id, scope->unique_code_id, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_make_closure(emit_t *emit, scope_t *scope, int n_dict_params, int n_default_params) { assert(0); } static void emit_native_call_function(emit_t *emit, int n_positional, int n_keyword, bool have_star_arg, bool have_dbl_star_arg) { // call special viper runtime routine with type info for args, and wanted type info for return assert(n_keyword == 0 && !have_star_arg && !have_dbl_star_arg); if (n_positional == 0) { vtype_kind_t vtype_fun; emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function assert(vtype_fun == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_FUNCTION_0, rt_call_function_0); } else if (n_positional == 1) { vtype_kind_t vtype_fun, vtype_arg1; emit_pre_pop_reg_reg(emit, &vtype_arg1, REG_ARG_2, &vtype_fun, REG_ARG_1); // the single argument, the function assert(vtype_fun == VTYPE_PYOBJ); assert(vtype_arg1 == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_FUNCTION_1, rt_call_function_1); } else if (n_positional == 2) { vtype_kind_t vtype_fun, vtype_arg1, vtype_arg2; emit_pre_pop_reg_reg_reg(emit, &vtype_arg2, REG_ARG_3, &vtype_arg1, REG_ARG_2, &vtype_fun, REG_ARG_1); // the second argument, the first argument, the function assert(vtype_fun == VTYPE_PYOBJ); assert(vtype_arg1 == VTYPE_PYOBJ); assert(vtype_arg2 == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_FUNCTION_2, rt_call_function_2); } else { assert(0); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_call_method(emit_t *emit, int n_positional, int n_keyword, bool have_star_arg, bool have_dbl_star_arg) { assert(n_keyword == 0 && !have_star_arg && !have_dbl_star_arg); if (n_positional == 0) { vtype_kind_t vtype_meth, vtype_self; emit_pre_pop_reg_reg(emit, &vtype_self, REG_ARG_2, &vtype_meth, REG_ARG_1); // the self object (or NULL), the method assert(vtype_meth == VTYPE_PYOBJ); assert(vtype_self == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_METHOD_1, rt_call_method_1); } else if (n_positional == 1) { vtype_kind_t vtype_meth, vtype_self, vtype_arg1; emit_pre_pop_reg_reg_reg(emit, &vtype_arg1, REG_ARG_3, &vtype_self, REG_ARG_2, &vtype_meth, REG_ARG_1); // the first argument, the self object (or NULL), the method assert(vtype_meth == VTYPE_PYOBJ); assert(vtype_self == VTYPE_PYOBJ); assert(vtype_arg1 == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_METHOD_2, rt_call_method_2); } else { assert(0); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_return_value(emit_t *emit) { // easy. since we don't know who we return to, just return the raw value. // runtime needs then to know our type signature, but I think that's possible. vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_RET); if (emit->do_viper_types) { assert(vtype == VTYPE_PTR_NONE); } else { assert(vtype == VTYPE_PYOBJ); } emit->last_emit_was_return_value = true; #if defined(N_X64) //asm_x64_call_ind(emit->as, 0, REG_RAX); to seg fault for debugging with gdb asm_x64_exit(emit->as); #elif defined(N_THUMB) //asm_thumb_call_ind(emit->as, 0, REG_R0); to seg fault for debugging with gdb asm_thumb_exit(emit->as); #endif } static void emit_native_raise_varargs(emit_t *emit, int n_args) { // call runtime assert(0); } static void emit_native_yield_value(emit_t *emit) { // not supported (for now) assert(0); } static void emit_native_yield_from(emit_t *emit) { // not supported (for now) assert(0); } const emit_method_table_t EXPORT_FUN(method_table) = { emit_native_set_viper_types, emit_native_start_pass, emit_native_end_pass, emit_native_last_emit_was_return_value, emit_native_get_stack_size, emit_native_set_stack_size, emit_native_load_id, emit_native_store_id, emit_native_delete_id, emit_native_label_assign, emit_native_import_name, emit_native_import_from, emit_native_import_star, emit_native_load_const_tok, emit_native_load_const_small_int, emit_native_load_const_int, emit_native_load_const_dec, emit_native_load_const_id, emit_native_load_const_str, emit_native_load_const_verbatim_start, emit_native_load_const_verbatim_int, emit_native_load_const_verbatim_str, emit_native_load_const_verbatim_strn, emit_native_load_const_verbatim_quoted_str, emit_native_load_const_verbatim_end, emit_native_load_fast, emit_native_load_name, emit_native_load_global, emit_native_load_deref, emit_native_load_closure, emit_native_load_attr, emit_native_load_method, emit_native_load_build_class, emit_native_store_fast, emit_native_store_name, emit_native_store_global, emit_native_store_deref, emit_native_store_attr, emit_native_store_locals, emit_native_store_subscr, emit_native_delete_fast, emit_native_delete_name, emit_native_delete_global, emit_native_delete_deref, emit_native_delete_attr, emit_native_delete_subscr, emit_native_dup_top, emit_native_dup_top_two, emit_native_pop_top, emit_native_rot_two, emit_native_rot_three, emit_native_jump, emit_native_pop_jump_if_true, emit_native_pop_jump_if_false, emit_native_jump_if_true_or_pop, emit_native_jump_if_false_or_pop, emit_native_setup_loop, emit_native_break_loop, emit_native_continue_loop, emit_native_setup_with, emit_native_with_cleanup, emit_native_setup_except, emit_native_setup_finally, emit_native_end_finally, emit_native_get_iter, emit_native_for_iter, emit_native_for_iter_end, emit_native_pop_block, emit_native_pop_except, emit_native_unary_op, emit_native_binary_op, emit_native_compare_op, emit_native_build_tuple, emit_native_build_list, emit_native_list_append, emit_native_build_map, emit_native_store_map, emit_native_map_add, emit_native_build_set, emit_native_set_add, emit_native_build_slice, emit_native_unpack_sequence, emit_native_unpack_ex, emit_native_make_function, emit_native_make_closure, emit_native_call_function, emit_native_call_method, emit_native_return_value, emit_native_raise_varargs, emit_native_yield_value, emit_native_yield_from, }; #endif // defined(N_X64) || defined(N_THUMB)