/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mperrno.h" #include "extmod/vfs.h" #include "mphalport.h" #include "modesp32.h" #include "esp_ota_ops.h" // esp_partition_read and esp_partition_write can operate on arbitrary bytes // but esp_partition_erase_range operates on 4k blocks. The default block size // for a Partition object is therefore 4k, to make writes efficient, and also // make it work well with filesystems like littlefs. The Partition object also // supports smaller block sizes, in which case a cache is used and writes may // be less efficient. #define NATIVE_BLOCK_SIZE_BYTES (4096) enum { ESP32_PARTITION_BOOT, ESP32_PARTITION_RUNNING, }; typedef struct _esp32_partition_obj_t { mp_obj_base_t base; const esp_partition_t *part; uint8_t *cache; uint16_t block_size; } esp32_partition_obj_t; STATIC esp32_partition_obj_t *esp32_partition_new(const esp_partition_t *part, uint16_t block_size) { if (part == NULL) { mp_raise_OSError(MP_ENOENT); } esp32_partition_obj_t *self = mp_obj_malloc(esp32_partition_obj_t, &esp32_partition_type); self->part = part; self->block_size = block_size; if (self->block_size < NATIVE_BLOCK_SIZE_BYTES) { self->cache = m_new(uint8_t, NATIVE_BLOCK_SIZE_BYTES); } else { self->cache = NULL; } return self; } STATIC void esp32_partition_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "", self->part->type, self->part->subtype, self->part->address, self->part->size, &self->part->label[0], self->part->encrypted ); } STATIC mp_obj_t esp32_partition_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // Check args mp_arg_check_num(n_args, n_kw, 1, 2, false); // Get requested partition const esp_partition_t *part; if (mp_obj_is_int(all_args[0])) { // Integer given, get that particular partition switch (mp_obj_get_int(all_args[0])) { case ESP32_PARTITION_BOOT: part = esp_ota_get_boot_partition(); break; case ESP32_PARTITION_RUNNING: part = esp_ota_get_running_partition(); break; default: mp_raise_ValueError(NULL); } } else { // String given, search for partition with that label const char *label = mp_obj_str_get_str(all_args[0]); part = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_ANY, label); if (part == NULL) { part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, label); } } // Get block size if given uint16_t block_size = NATIVE_BLOCK_SIZE_BYTES; if (n_args == 2) { block_size = mp_obj_get_int(all_args[1]); } // Return new object return MP_OBJ_FROM_PTR(esp32_partition_new(part, block_size)); } STATIC mp_obj_t esp32_partition_find(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // Parse args enum { ARG_type, ARG_subtype, ARG_label, ARG_block_size }; static const mp_arg_t allowed_args[] = { { MP_QSTR_type, MP_ARG_INT, {.u_int = ESP_PARTITION_TYPE_APP} }, { MP_QSTR_subtype, MP_ARG_INT, {.u_int = ESP_PARTITION_SUBTYPE_ANY} }, { MP_QSTR_label, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_block_size, MP_ARG_INT, {.u_int = NATIVE_BLOCK_SIZE_BYTES} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get optional label string const char *label = NULL; if (args[ARG_label].u_obj != mp_const_none) { label = mp_obj_str_get_str(args[ARG_label].u_obj); } // Get block size uint16_t block_size = args[ARG_block_size].u_int; // Build list of matching partitions mp_obj_t list = mp_obj_new_list(0, NULL); esp_partition_iterator_t iter = esp_partition_find(args[ARG_type].u_int, args[ARG_subtype].u_int, label); while (iter != NULL) { mp_obj_list_append(list, MP_OBJ_FROM_PTR(esp32_partition_new(esp_partition_get(iter), block_size))); iter = esp_partition_next(iter); } esp_partition_iterator_release(iter); return list; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_partition_find_fun_obj, 0, esp32_partition_find); STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_partition_find_obj, MP_ROM_PTR(&esp32_partition_find_fun_obj)); STATIC mp_obj_t esp32_partition_info(mp_obj_t self_in) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t tuple[] = { MP_OBJ_NEW_SMALL_INT(self->part->type), MP_OBJ_NEW_SMALL_INT(self->part->subtype), mp_obj_new_int_from_uint(self->part->address), mp_obj_new_int_from_uint(self->part->size), mp_obj_new_str(&self->part->label[0], strlen(&self->part->label[0])), mp_obj_new_bool(self->part->encrypted), }; return mp_obj_new_tuple(6, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_partition_info_obj, esp32_partition_info); STATIC mp_obj_t esp32_partition_readblocks(size_t n_args, const mp_obj_t *args) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t offset = mp_obj_get_int(args[1]) * self->block_size; mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE); if (n_args == 4) { offset += mp_obj_get_int(args[3]); } check_esp_err(esp_partition_read(self->part, offset, bufinfo.buf, bufinfo.len)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_partition_readblocks_obj, 3, 4, esp32_partition_readblocks); STATIC mp_obj_t esp32_partition_writeblocks(size_t n_args, const mp_obj_t *args) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t offset = mp_obj_get_int(args[1]) * self->block_size; mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ); if (n_args == 3) { // A simple write, which requires erasing first. if (self->block_size >= NATIVE_BLOCK_SIZE_BYTES) { // Block size is at least native erase-page size, so do an efficient erase. check_esp_err(esp_partition_erase_range(self->part, offset, bufinfo.len)); } else { // Block size is less than native erase-page size, so do erase in sections. uint32_t addr = (offset / NATIVE_BLOCK_SIZE_BYTES) * NATIVE_BLOCK_SIZE_BYTES; uint32_t o = offset % NATIVE_BLOCK_SIZE_BYTES; uint32_t top_addr = offset + bufinfo.len; while (addr < top_addr) { if (o > 0 || top_addr < addr + NATIVE_BLOCK_SIZE_BYTES) { check_esp_err(esp_partition_read(self->part, addr, self->cache, NATIVE_BLOCK_SIZE_BYTES)); } check_esp_err(esp_partition_erase_range(self->part, addr, NATIVE_BLOCK_SIZE_BYTES)); if (o > 0) { check_esp_err(esp_partition_write(self->part, addr, self->cache, o)); } if (top_addr < addr + NATIVE_BLOCK_SIZE_BYTES) { check_esp_err(esp_partition_write(self->part, top_addr, self->cache, addr + NATIVE_BLOCK_SIZE_BYTES - top_addr)); } o = 0; addr += NATIVE_BLOCK_SIZE_BYTES; } } } else { // An extended write, erasing must have been done explicitly before this write. offset += mp_obj_get_int(args[3]); } check_esp_err(esp_partition_write(self->part, offset, bufinfo.buf, bufinfo.len)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_partition_writeblocks_obj, 3, 4, esp32_partition_writeblocks); STATIC mp_obj_t esp32_partition_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case MP_BLOCKDEV_IOCTL_INIT: return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_DEINIT: return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_SYNC: return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_BLOCK_COUNT: return MP_OBJ_NEW_SMALL_INT(self->part->size / self->block_size); case MP_BLOCKDEV_IOCTL_BLOCK_SIZE: return MP_OBJ_NEW_SMALL_INT(self->block_size); case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: { if (self->block_size != NATIVE_BLOCK_SIZE_BYTES) { return MP_OBJ_NEW_SMALL_INT(-MP_EINVAL); } uint32_t offset = mp_obj_get_int(arg_in) * NATIVE_BLOCK_SIZE_BYTES; check_esp_err(esp_partition_erase_range(self->part, offset, NATIVE_BLOCK_SIZE_BYTES)); return MP_OBJ_NEW_SMALL_INT(0); } default: return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(esp32_partition_ioctl_obj, esp32_partition_ioctl); STATIC mp_obj_t esp32_partition_set_boot(mp_obj_t self_in) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(self_in); check_esp_err(esp_ota_set_boot_partition(self->part)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_partition_set_boot_obj, esp32_partition_set_boot); STATIC mp_obj_t esp32_partition_get_next_update(mp_obj_t self_in) { esp32_partition_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_FROM_PTR(esp32_partition_new(esp_ota_get_next_update_partition(self->part), NATIVE_BLOCK_SIZE_BYTES)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_partition_get_next_update_obj, esp32_partition_get_next_update); STATIC mp_obj_t esp32_partition_mark_app_valid_cancel_rollback(mp_obj_t cls_in) { check_esp_err(esp_ota_mark_app_valid_cancel_rollback()); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_partition_mark_app_valid_cancel_rollback_fun_obj, esp32_partition_mark_app_valid_cancel_rollback); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(esp32_partition_mark_app_valid_cancel_rollback_obj, MP_ROM_PTR(&esp32_partition_mark_app_valid_cancel_rollback_fun_obj)); STATIC const mp_rom_map_elem_t esp32_partition_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_find), MP_ROM_PTR(&esp32_partition_find_obj) }, { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&esp32_partition_info_obj) }, { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&esp32_partition_readblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&esp32_partition_writeblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&esp32_partition_ioctl_obj) }, { MP_ROM_QSTR(MP_QSTR_set_boot), MP_ROM_PTR(&esp32_partition_set_boot_obj) }, { MP_ROM_QSTR(MP_QSTR_mark_app_valid_cancel_rollback), MP_ROM_PTR(&esp32_partition_mark_app_valid_cancel_rollback_obj) }, { MP_ROM_QSTR(MP_QSTR_get_next_update), MP_ROM_PTR(&esp32_partition_get_next_update_obj) }, { MP_ROM_QSTR(MP_QSTR_BOOT), MP_ROM_INT(ESP32_PARTITION_BOOT) }, { MP_ROM_QSTR(MP_QSTR_RUNNING), MP_ROM_INT(ESP32_PARTITION_RUNNING) }, { MP_ROM_QSTR(MP_QSTR_TYPE_APP), MP_ROM_INT(ESP_PARTITION_TYPE_APP) }, { MP_ROM_QSTR(MP_QSTR_TYPE_DATA), MP_ROM_INT(ESP_PARTITION_TYPE_DATA) }, }; STATIC MP_DEFINE_CONST_DICT(esp32_partition_locals_dict, esp32_partition_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( esp32_partition_type, MP_QSTR_Partition, MP_TYPE_FLAG_NONE, make_new, esp32_partition_make_new, print, esp32_partition_print, locals_dict, &esp32_partition_locals_dict );