PythonExtra/ports/samd/samd_qspiflash.c
robert-hh 2b5a5a0f35 samd/samd_qspiflash: Add QSPI flash driver and configure it accordingly.
The QSPI driver provides the interface for using an on-board QSPI flash for
the filesystem.  It provides the same methods as the driver for the
internal flash and uses the same name.  Therefore, only one of the drivers
for internal flash, SPI flash and QSPI flash must be enabled at a time.

Signed-off-by: robert-hh <robert@hammelrath.com>
2023-06-06 00:49:36 +10:00

492 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Adafruit Industries
* Copyright (c) 2023 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Port of the Adafruit QSPIflash driver for SAMD devices
*
*/
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "modmachine.h"
#include "extmod/machine_spi.h"
#include "extmod/vfs.h"
#include "pin_af.h"
#include "clock_config.h"
#include "sam.h"
#ifdef MICROPY_HW_QSPIFLASH
#include "drivers/memory/external_flash_device.h"
// QSPI command codes
enum
{
QSPI_CMD_READ = 0x03,
QSPI_CMD_READ_4B = 0x13,
QSPI_CMD_QUAD_READ = 0x6B,// 1 line address, 4 line data
QSPI_CMD_READ_JEDEC_ID = 0x9f,
QSPI_CMD_PAGE_PROGRAM = 0x02,
QSPI_CMD_PAGE_PROGRAM_4B = 0x12,
QSPI_CMD_QUAD_PAGE_PROGRAM = 0x32, // 1 line address, 4 line data
QSPI_CMD_READ_STATUS = 0x05,
QSPI_CMD_READ_STATUS2 = 0x35,
QSPI_CMD_WRITE_STATUS = 0x01,
QSPI_CMD_WRITE_STATUS2 = 0x31,
QSPI_CMD_ENABLE_RESET = 0x66,
QSPI_CMD_RESET = 0x99,
QSPI_CMD_WRITE_ENABLE = 0x06,
QSPI_CMD_WRITE_DISABLE = 0x04,
QSPI_CMD_ERASE_SECTOR = 0x20,
QSPI_CMD_ERASE_SECTOR_4B = 0x21,
QSPI_CMD_ERASE_BLOCK = 0xD8,
QSPI_CMD_ERASE_CHIP = 0xC7,
QSPI_CMD_READ_SFDP_PARAMETER = 0x5A,
};
// QSPI flash pins are: CS=PB11, SCK=PB10, IO0-IO3=PA08, PA09, PA10 and PA11.
#define PIN_CS (43)
#define PIN_SCK (42)
#define PIN_IO0 (8)
#define PIN_IO1 (9)
#define PIN_IO2 (10)
#define PIN_IO3 (11)
#define PAGE_SIZE (256)
#define SECTOR_SIZE (4096)
typedef struct _samd_qspiflash_obj_t {
mp_obj_base_t base;
uint16_t pagesize;
uint16_t sectorsize;
uint32_t size;
uint8_t phase;
uint8_t polarity;
} samd_qspiflash_obj_t;
/// List of all possible flash devices used by Adafruit boards
static const external_flash_device possible_devices[] = {
MICROPY_HW_QSPIFLASH
};
#define EXTERNAL_FLASH_DEVICE_COUNT MP_ARRAY_SIZE(possible_devices)
static external_flash_device const *flash_device;
static external_flash_device generic_config = GENERIC;
extern const mp_obj_type_t samd_qspiflash_type;
// The QSPIflash object is a singleton
static samd_qspiflash_obj_t qspiflash_obj = { { &samd_qspiflash_type } };
// Turn off cache and invalidate all data in it.
static void samd_peripherals_disable_and_clear_cache(void) {
CMCC->CTRL.bit.CEN = 0;
while (CMCC->SR.bit.CSTS) {
}
CMCC->MAINT0.bit.INVALL = 1;
}
// Enable cache
static void samd_peripherals_enable_cache(void) {
CMCC->CTRL.bit.CEN = 1;
}
// Run a single QSPI instruction.
// Parameters are:
// - command instruction code
// - iframe iframe register value (configured by caller according to command code)
// - addr the address to read or write from. If the instruction doesn't require an address, this parameter is meaningless.
// - buffer pointer to the data to be written or stored depending on the type is Read or Write
// - size the number of bytes to read or write.
bool run_instruction(uint8_t command, uint32_t iframe, uint32_t addr, uint8_t *buffer, uint32_t size) {
samd_peripherals_disable_and_clear_cache();
uint8_t *qspi_mem = (uint8_t *)QSPI_AHB;
if (addr) {
qspi_mem += addr;
}
QSPI->INSTRCTRL.bit.INSTR = command;
QSPI->INSTRADDR.reg = addr;
QSPI->INSTRFRAME.reg = iframe;
// Dummy read of INSTRFRAME needed to synchronize.
// See Instruction Transmission Flow Diagram, figure 37.9, page 995
// and Example 4, page 998, section 37.6.8.5.
(volatile uint32_t)QSPI->INSTRFRAME.reg;
if (buffer && size) {
uint32_t const tfr_type = iframe & QSPI_INSTRFRAME_TFRTYPE_Msk;
if ((tfr_type == QSPI_INSTRFRAME_TFRTYPE_READ) || (tfr_type == QSPI_INSTRFRAME_TFRTYPE_READMEMORY)) {
memcpy(buffer, qspi_mem, size);
} else {
memcpy(qspi_mem, buffer, size);
}
}
__asm volatile ("dsb");
__asm volatile ("isb");
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
samd_peripherals_enable_cache();
return true;
}
bool run_command(uint8_t command) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN;
return run_instruction(command, iframe, 0, NULL, 0);
}
bool read_command(uint8_t command, uint8_t *response, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_DATAEN;
return run_instruction(command, iframe, 0, response, len);
}
bool read_memory_single(uint8_t command, uint32_t addr, uint8_t *response, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN |
QSPI_INSTRFRAME_DATAEN | QSPI_INSTRFRAME_DUMMYLEN(8);
return run_instruction(command, iframe, addr, response, len);
}
bool write_command(uint8_t command, uint8_t const *data, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITE | QSPI_INSTRFRAME_INSTREN | (data != NULL ? QSPI_INSTRFRAME_DATAEN : 0);
return run_instruction(command, iframe, 0, (uint8_t *)data, len);
}
bool erase_command(uint8_t command, uint32_t address) {
// Sector Erase
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITE | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN;
return run_instruction(command, iframe, address, NULL, 0);
}
bool read_memory_quad(uint8_t command, uint32_t addr, uint8_t *data, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_QUAD_OUTPUT | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN |
/*QSPI_INSTRFRAME_CRMODE |*/ QSPI_INSTRFRAME_DUMMYLEN(8);
return run_instruction(command, iframe, addr, data, len);
}
bool write_memory_quad(uint8_t command, uint32_t addr, uint8_t *data, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_QUAD_OUTPUT | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITEMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN;
return run_instruction(command, iframe, addr, data, len);
}
static uint8_t read_status(void) {
uint8_t r;
read_command(QSPI_CMD_READ_STATUS, &r, 1);
return r;
}
static uint8_t read_status2(void) {
uint8_t r;
read_command(QSPI_CMD_READ_STATUS2, &r, 1);
return r;
}
static bool write_enable(void) {
return run_command(QSPI_CMD_WRITE_ENABLE);
}
static void wait_for_flash_ready(void) {
// both WIP and WREN bit should be clear
while (read_status() & 0x03) {
}
}
static uint8_t get_baud(int32_t freq_mhz) {
int baud = get_peripheral_freq() / (freq_mhz * 1000000) - 1;
if (baud < 1) {
baud = 1;
}
if (baud > 255) {
baud = 255;
}
return baud;
}
int get_sfdp_table(uint8_t *table, int maxlen) {
uint8_t header[16];
read_memory_single(QSPI_CMD_READ_SFDP_PARAMETER, 0, header, sizeof(header));
int len = MIN(header[11] * 4, maxlen);
int addr = header[12] + (header[13] << 8) + (header[14] << 16);
read_memory_single(QSPI_CMD_READ_SFDP_PARAMETER, addr, table, len);
return len;
}
STATIC mp_obj_t samd_qspiflash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// The QSPI is a singleton
samd_qspiflash_obj_t *self = &qspiflash_obj;
self->phase = 0;
self->polarity = 0;
self->pagesize = PAGE_SIZE;
self->sectorsize = SECTOR_SIZE;
// Enable the device clock
MCLK->AHBMASK.reg |= MCLK_AHBMASK_QSPI;
MCLK->AHBMASK.reg |= MCLK_AHBMASK_QSPI_2X;
MCLK->APBCMASK.reg |= MCLK_APBCMASK_QSPI;
// Configure the pins.
mp_hal_set_pin_mux(PIN_CS, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_SCK, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO0, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO1, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO2, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO3, ALT_FCT_QSPI);
// Configure the QSPI interface
QSPI->CTRLA.bit.SWRST = 1;
mp_hal_delay_us(1000); // Maybe not required.
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY |
QSPI_CTRLB_CSMODE_NORELOAD |
QSPI_CTRLB_DATALEN_8BITS |
QSPI_CTRLB_CSMODE_LASTXFER;
// start with low 4Mhz, Mode 0
QSPI->BAUD.reg = QSPI_BAUD_BAUD(get_baud(4)) |
(self->phase << QSPI_BAUD_CPHA_Pos) |
(self->polarity << QSPI_BAUD_CPOL_Pos);
QSPI->CTRLA.bit.ENABLE = 1;
uint8_t jedec_ids[3];
read_command(QSPI_CMD_READ_JEDEC_ID, jedec_ids, sizeof(jedec_ids));
// Read the common sfdp table
// Check the device addr length, support of 1-1-4 mode and get the sector size
uint8_t sfdp_table[128];
int len = get_sfdp_table(sfdp_table, sizeof(sfdp_table));
if (len >= 29) {
self->sectorsize = 1 << sfdp_table[28];
bool addr4b = ((sfdp_table[2] >> 1) & 0x03) == 0x02;
bool supports_qspi_114 = (sfdp_table[2] & 0x40) != 0;
if (addr4b || !supports_qspi_114) {
mp_raise_ValueError(MP_ERROR_TEXT("QSPI mode not supported"));
}
}
// Check, if the flash device is known and get it's properties.
flash_device = NULL;
for (uint8_t i = 0; i < EXTERNAL_FLASH_DEVICE_COUNT; i++) {
const external_flash_device *possible_device = &possible_devices[i];
if (jedec_ids[0] == possible_device->manufacturer_id &&
jedec_ids[1] == possible_device->memory_type &&
jedec_ids[2] == possible_device->capacity) {
flash_device = possible_device;
break;
}
}
// If the flash device is not known, try generic config options
if (flash_device == NULL) {
if (jedec_ids[0] == 0xc2) { // Macronix devices
generic_config.quad_enable_bit_mask = 0x04;
generic_config.single_status_byte = true;
}
generic_config.total_size = 1 << jedec_ids[2];
flash_device = &generic_config;
}
self->size = flash_device->total_size;
// The write in progress bit should be low.
while (read_status() & 0x01) {
}
// The suspended write/erase bit should be low.
while (read_status2() & 0x80) {
}
run_command(QSPI_CMD_ENABLE_RESET);
run_command(QSPI_CMD_RESET);
// Wait 30us for the reset
mp_hal_delay_us(30);
// Speed up the frequency
QSPI->BAUD.bit.BAUD = get_baud(flash_device->max_clock_speed_mhz);
// Enable Quad Mode if available
uint8_t status = 0;
if (flash_device->quad_enable_bit_mask) {
// Verify that QSPI mode is enabled.
status = flash_device->single_status_byte ? read_status() : read_status2();
}
// Check the quad enable bit.
if ((status & flash_device->quad_enable_bit_mask) == 0) {
write_enable();
uint8_t full_status[2] = {0x00, flash_device->quad_enable_bit_mask};
if (flash_device->write_status_register_split) {
write_command(QSPI_CMD_WRITE_STATUS2, full_status + 1, 1);
} else if (flash_device->single_status_byte) {
write_command(QSPI_CMD_WRITE_STATUS, full_status + 1, 1);
} else {
write_command(QSPI_CMD_WRITE_STATUS, full_status, 2);
}
}
// Turn off writes in case this is a microcontroller only reset.
run_command(QSPI_CMD_WRITE_DISABLE);
wait_for_flash_ready();
return self;
}
STATIC mp_obj_t samd_qspiflash_read(samd_qspiflash_obj_t *self, uint32_t addr, uint8_t *dest, uint32_t len) {
if (len > 0) {
wait_for_flash_ready();
// Command 0x6B 1 line address, 4 line Data
// with Continuous Read Mode and Quad output mode, read memory type
read_memory_quad(QSPI_CMD_QUAD_READ, addr, dest, len);
}
return mp_const_none;
}
STATIC mp_obj_t samd_qspiflash_write(samd_qspiflash_obj_t *self, uint32_t addr, uint8_t *src, uint32_t len) {
uint32_t length = len;
uint32_t pos = 0;
uint8_t *buf = src;
while (pos < length) {
uint16_t maxsize = self->pagesize - pos % self->pagesize;
uint16_t size = (length - pos) > maxsize ? maxsize : length - pos;
wait_for_flash_ready();
write_enable();
write_memory_quad(QSPI_CMD_QUAD_PAGE_PROGRAM, addr, buf + pos, size);
addr += size;
pos += size;
}
return mp_const_none;
}
STATIC mp_obj_t samd_qspiflash_erase(uint32_t addr) {
wait_for_flash_ready();
write_enable();
erase_command(QSPI_CMD_ERASE_SECTOR, addr);
return mp_const_none;
}
STATIC mp_obj_t samd_qspiflash_readblocks(size_t n_args, const mp_obj_t *args) {
samd_qspiflash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = (mp_obj_get_int(args[1]) * self->sectorsize);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
if (n_args == 4) {
offset += mp_obj_get_int(args[3]);
}
// Read data to flash (adf4 API)
samd_qspiflash_read(self, offset, bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(samd_qspiflash_readblocks_obj, 3, 4, samd_qspiflash_readblocks);
STATIC mp_obj_t samd_qspiflash_writeblocks(size_t n_args, const mp_obj_t *args) {
samd_qspiflash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = (mp_obj_get_int(args[1]) * self->sectorsize);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
if (n_args == 3) {
samd_qspiflash_erase(offset);
// TODO check return value
} else {
offset += mp_obj_get_int(args[3]);
}
// Write data to flash (adf4 API)
samd_qspiflash_write(self, offset, bufinfo.buf, bufinfo.len);
// TODO check return value
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(samd_qspiflash_writeblocks_obj, 3, 4, samd_qspiflash_writeblocks);
STATIC mp_obj_t samd_qspiflash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) {
samd_qspiflash_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case MP_BLOCKDEV_IOCTL_INIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_DEINIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_SYNC:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_BLOCK_COUNT:
return MP_OBJ_NEW_SMALL_INT(self->size / self->sectorsize);
case MP_BLOCKDEV_IOCTL_BLOCK_SIZE:
return MP_OBJ_NEW_SMALL_INT(self->sectorsize);
case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: {
samd_qspiflash_erase(mp_obj_get_int(arg_in) * self->sectorsize);
// TODO check return value
return MP_OBJ_NEW_SMALL_INT(0);
}
default:
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(samd_qspiflash_ioctl_obj, samd_qspiflash_ioctl);
STATIC const mp_rom_map_elem_t samd_qspiflash_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&samd_qspiflash_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&samd_qspiflash_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&samd_qspiflash_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(samd_qspiflash_locals_dict, samd_qspiflash_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
samd_qspiflash_type,
MP_QSTR_Flash,
MP_TYPE_FLAG_NONE,
make_new, samd_qspiflash_make_new,
locals_dict, &samd_qspiflash_locals_dict
);
#endif // MICROPY_HW_QSPI_FLASH