PythonExtra/ports/renesas-ra/modmachine.c

310 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "modmachine.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "py/objstr.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "extmod/machine_spi.h"
#include "shared/runtime/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "drivers/dht/dht.h"
#include "gccollect.h"
#include "irq.h"
#include "powerctrl.h"
#include "pybthread.h"
#include "storage.h"
#include "pin.h"
#include "timer.h"
#include "rtc.h"
#include "spi.h"
#include "uart.h"
#if MICROPY_PY_MACHINE
#define PYB_RESET_SOFT (0)
#define PYB_RESET_POWER_ON (1)
#define PYB_RESET_HARD (2)
#define PYB_RESET_WDT (3)
#define PYB_RESET_DEEPSLEEP (4)
STATIC uint32_t reset_cause;
void get_unique_id(uint8_t *id) {
uint32_t *p = (uint32_t *)id;
uint32_t *uniqueid = (uint32_t *)R_BSP_UniqueIdGet();
p[0] = uniqueid[0];
p[1] = uniqueid[1];
p[2] = uniqueid[2];
p[3] = uniqueid[3];
}
void machine_init(void) {
}
void machine_deinit(void) {
// we are doing a soft-reset so change the reset_cause
reset_cause = PYB_RESET_SOFT;
}
// machine.info([dump_alloc_table])
// Print out lots of information about the board.
STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) {
// get and print unique id; 128 bits
{
uint8_t id[16];
get_unique_id((uint8_t *)&id);
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n",
id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7],
id[8], id[9], id[10], id[11], id[12], id[13], id[14], id[15]);
}
// get and print clock speeds
// SystemCoreClock is an external variable in FSP
printf("S=%u\nP=%u\n",
(unsigned int)SystemCoreClock,
(unsigned int)MICROPY_HW_MCU_PCLK);
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_sstack=%p\n", &_sstack);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %u total\n", info.total);
printf(" %u : %u\n", info.used, info.free);
printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
#if MICROPY_VFS_FAT
for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
if (strncmp("/flash", vfs->str, vfs->len) == 0) {
// assumes that it's a FatFs filesystem
fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj);
DWORD nclst;
f_getfree(&vfs_fat->fatfs, &nclst);
printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512));
break;
}
}
#endif
}
#if MICROPY_PY_THREAD
pyb_thread_dump();
#endif
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info);
// Returns a string of 16 bytes (128 bits), which is the unique ID for the MCU.
STATIC mp_obj_t machine_unique_id(void) {
uint8_t id[16];
get_unique_id((uint8_t *)&id);
return mp_obj_new_bytes(id, 16);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);
// Resets the pyboard in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_reset(void) {
powerctrl_mcu_reset();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_soft_reset(void) {
pyexec_system_exit = PYEXEC_FORCED_EXIT;
mp_raise_type(&mp_type_SystemExit);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);
// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t machine_bootloader(size_t n_args, const mp_obj_t *args) {
#if MICROPY_HW_ENABLE_STORAGE
storage_flush();
#endif
__disable_irq();
#if MICROPY_HW_USES_BOOTLOADER
// ToDo: need to review how to implement
#endif
while (1) {
;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_bootloader_obj, 0, 1, machine_bootloader);
// get or set the MCU frequencies
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get
return mp_obj_new_int(SystemCoreClock);
} else {
// set
mp_raise_NotImplementedError(MP_ERROR_TEXT("machine.freq set not supported yet"));
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq);
// idle()
// This executies a wfi machine instruction which reduces power consumption
// of the MCU until an interrupt occurs, at which point execution continues.
STATIC mp_obj_t machine_idle(void) {
__WFI();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle);
STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) {
if (n_args != 0) {
mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]};
machine_rtc_wakeup(2, args2);
}
powerctrl_enter_stop_mode();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep);
STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) {
if (n_args != 0) {
mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]};
machine_rtc_wakeup(2, args2);
}
powerctrl_enter_standby_mode();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep);
STATIC mp_obj_t machine_reset_cause(void) {
return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&machine_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) },
#if MICROPY_PY_MACHINE_PULSE
{ MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&machine_pin_type) },
{ MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) },
{ MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&machine_rtc_type) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&machine_adc_type) },
#if MICROPY_PY_MACHINE_I2C
#if MICROPY_HW_ENABLE_HW_I2C
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_SoftI2C), MP_ROM_PTR(&mp_machine_soft_i2c_type) },
#endif
#if MICROPY_PY_MACHINE_SPI
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hard_spi_type) },
{ MP_ROM_QSTR(MP_QSTR_SoftSPI), MP_ROM_PTR(&mp_machine_soft_spi_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&machine_uart_type) },
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(PYB_RESET_POWER_ON) },
{ MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(PYB_RESET_HARD) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(PYB_RESET_WDT) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(PYB_RESET_DEEPSLEEP) },
{ MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(PYB_RESET_SOFT) },
{ MP_ROM_QSTR(MP_QSTR_dht_readinto), MP_ROM_PTR(&dht_readinto_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t mp_module_machine = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&machine_module_globals,
};
MP_REGISTER_MODULE(MP_QSTR_umachine, mp_module_machine);
#endif // MICROPY_PY_MACHINE