A Python add-in with extra features, for fx-CG and fx-9860G-like.
Go to file
Damien George f4c9b33abf py: Remove DELETE_SUBSCR opcode, combine with STORE_SUBSCR.
This makes the runtime and object APIs more consistent.  mp_store_subscr
functionality now moved into objects (ie list and dict store_item).
2014-04-08 21:32:29 +01:00
examples ffi: Implement ffivar.get()/set() methods. 2014-02-14 20:38:35 +02:00
logo Make GitHub logo/image a JPEG so it's smaller. 2014-01-14 23:55:53 +00:00
py py: Remove DELETE_SUBSCR opcode, combine with STORE_SUBSCR. 2014-04-08 21:32:29 +01:00
stm Add a check for NULL nlr_top in nlr_jump. 2014-04-08 14:08:14 +00:00
stmhal stmhal: in EXTI interrupt handler wrap uPy calls in gc_lock and nlr_buf. 2014-04-08 15:21:26 +01:00
teensy Improve REPL detecting when input needs to continue. 2014-04-08 11:04:29 +00:00
tests py: Remove DELETE_SUBSCR opcode, combine with STORE_SUBSCR. 2014-04-08 21:32:29 +01:00
tools pip-micropython: Require command verb, but restrict to "install" only. 2014-04-07 02:53:41 +03:00
unix unix modffi: Support any object implementing buffer protocol as a native arg. 2014-04-08 19:08:34 +03:00
unix-cpy Add a check for NULL nlr_top in nlr_jump. 2014-04-08 14:08:14 +00:00
windows windows: Use most of the source files from unix/ port. 2014-04-08 13:25:47 +00:00
.gitignore Added memzip filesystem support for teensy 2014-01-11 16:16:20 -08:00
CODECONVENTIONS.md Add CODECONVENTIONS, and modify i2c module to conform. 2013-12-29 12:12:25 +00:00
LICENSE Add LICENSE and README. 2013-12-20 11:47:41 +00:00
README.md README: Be specific that ARMv7 Linux is supported. 2014-04-07 23:46:08 +03:00

README.md

The Micro Python project

MicroPython Logo

This is the Micro Python project, which aims to put an implementation of Python 3.x on a microcontroller.

WARNING: this project is in its early stages and is subject to large changes of the code-base, including project-wide name changes and API changes. The software will not start to mature until March 2014 at the earliest.

See the repository www.github.com/micropython/pyboard for the Micro Python board.

Major components in this repository:

  • py/ -- the core Python implementation, including compiler and runtime.
  • unix/ -- a version of Micro Python that runs on Unix.
  • stmhal/ -- a version of Micro Python that runs on the Micro Python board with an STM32F405RG (using ST's new Cube HAL drivers).
  • stm/ -- obsolete version of Micro Python for the Micro Python board that uses ST's old peripheral drivers.
  • teensy/ -- a version of Micro Python that runs on the Teensy 3.1 (preliminary but functional).

Additional components:

  • unix-cpy/ -- a version of Micro Python that outputs bytecode (for testing).
  • tests/ -- test framework and test scripts.
  • tools/ -- various tools, including the pyboard.py module.
  • examples/ -- a few example Python scripts.

"make" is used to build the components, or "gmake" on BSD-based systems. You will also need bash and python (2.7 or 3.3) for the stm port.

The Unix version

The "unix" port requires a standard Unix environment with gcc and GNU make. x86 and x64 architectures are supported (i.e. x86 32- and 64-bit), as well as ARMv7. Porting to other architectures require writing some assembly code for the exception handling.

To build:

$ cd unix
$ make

Then to test it:

$ ./micropython
>>> list(5 * x + y for x in range(10) for y in [4, 2, 1])

Debian/Ubuntu/Mint derivative Linux distros will require build-essentials and libreadline-dev packages installed. To build FFI (Foreign Function Interface) module (recommended, enable in unix/mpconfigport.mk), libffi-dev is required.

The STM version

The "stmhal" port requires an ARM compiler, arm-none-eabi-gcc, and associated bin-utils. For those using Arch Linux, you need arm-none-eabi-binutils and arm-none-eabi-gcc packages from the AUR. Otherwise, try here: https://launchpad.net/gcc-arm-embedded

To build:

$ cd stmhal
$ make

You then need to get your board into DFU mode. On the pyboard, connect the 3V3 pin to the P1/DFU pin with a wire (on PYBv1.0 they are next to each other on the bottom left of the board, second row from the bottom).

Then to flash the code via USB DFU to your device:

$ dfu-util -a 0 -D build/flash.dfu

You will need the dfu-util program, on Arch Linux it's dfu-util-git in the AUR.