gint/src/tmu/inth-tmu.s

95 lines
1.9 KiB
ArmAsm
Raw Normal View History

kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
/*
** gint:tmu:inth-tmu - Interrupt handlers for the timer units
**
** This handler consists of 3 consecutive gates that operate as a block. It
** clears the interrupt flags, invokes a GINT_CALL() in userspace, and stops
** the timer if the callback returns non-zero.
**
** It is important to notice that the code of the gates is continuous in this
** file and thus must be continuous in memory, as the assembler will use
** relative addressing methods. This "block operations" is only possible for
** handlers that are mapped to consecutive event codes.
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
*/
/* Gates for the standard Timer Unit (TMU) */
.global _inth_tmu /* 96 bytes */
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
.section .gint.blocks, "ax"
.align 4
/* TMU0 entry and interrupt flag clearing. */
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
_inth_tmu:
mov #0, r5
mov #0, r6
mov #0, r7
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
.shared1:
mov.l .TCR0, r1
add r6, r1
/* Save the timer ID on the stack */
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
mov.l r8, @-r15
sts.l pr, @-r15
mov.l r5, @-r15
/* Clear the interrupt flag. Because r5 contains 0, 1 or 2 the 16 top
bits are 0 so we can compare without extending */
1: mov.w @r1, r5
extu.b r5, r3
cmp/eq r5, r3
bf/s 1b
mov.w r3, @r1
/* Prepare to run the callback */
mov.l .callback, r8
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
bra .shared2
mov.l @r8, r8
/* TMU1 entry, callback and timer stop logic. */
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
_inth_tmu_1:
mov #1, r5
mov #12, r6
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
bra .shared1
mov #20, r7
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
.shared2:
/* Invoke callback */
mov.l .tmu_callbacks, r4
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
jsr @r8
add r7, r4
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
tst r0, r0
mov.l .timer_stop, r2
bt/s .shared3
mov.l r2, @-r15
/* Stop the timer if the return value is not zero. We use the top of
the stack as a gint_call_t object; only the function and first
argument matter, timer_stop() will ignore the rest. */
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
jsr @r8
mov r15, r4
bra .shared3
nop
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
nop
/* TMU2 entry, shared exit and storage. */
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
_inth_tmu_2:
mov #2, r5
mov #24, r6
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
bra .shared1
mov #40, r7
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
.shared3:
add #8, r15
lds.l @r15+, pr
rts
mov.l @r15+, r8
kernel: dynamic loading of GMAPPED functions to user RAM This commit introduces a large architectural change. Unlike previous models of the fx-9860G series, the G-III models have a new user RAM address different from 8801c000. The purpose of this change is to dynamically load GMAPPED functions to this address by querying the TLB, and call them through a function pointer whose address is determined when loading. Because of the overhead of using a function pointer in both assembly and C code, changes have been made to avoid GMAPPED functions altogether. Current, only cpu_setVBR() and gint_inth_callback() are left, the second being used specifically to enable TLB misses when needed. * Add a .gint.mappedrel section for the function pointers holding addresses to GMAPPED functions; add function pointers for cpu_setVBR() and gint_inth_callback() * Move rram to address 0 instead of the hardcoded 0x8801c000 * Load GMAPPED functions at their linked address + the physical address user RAM is mapped, to and compute their function pointers * Remove the GMAPPED macro since no user function needs it anymore * Add section flags "ax" (code) or "aw" (data) to every custom .section in assembler code, as they default to unpredictable values that can cause the section to be marked NOLOAD by the linker * Update the main kernel, TMU, ETMU and RTC interrupt handlers to use the new indirect calling method This is made possible by new MMU functions giving direct access to the physical area behind any virtualized page. * Add an mmu_translate() function to query the TLB * Add an mmu_uram() function to access user RAM from P1 The exception catching mechanism has been modified to avoid the use of GMAPPED functions altogether. * Set SR.BL=0 and SR.IMASK=15 before calling exception catchers * Move gint_exc_skip() to normal text ROM * Also fix registers not being popped off the stack before a panic The timer drivers have also been modified to avoid GMAPPED functions. * Invoke timer_stop() through gint_inth_callback() and move it to ROM * Move and expand the ETMU driver to span 3 blocks at 0xd00 (ETMU4) * Remove the timer_clear() function by inlining it into the ETMU handler (TCR is provided within the storage block of each timer) * Also split src/timer/inth.s into src/timer/inth-{tmu,etmu}.s Additionally, VBR addresses are now determined at runtime to further reduce hardcoded memory layout addresses in the linker script. * Determine fx-9860G VBR addresses dynamically from mmu_uram() * Determine fx-CG 50 VBR addresses dynamically from mmu_uram() * Remove linker symbols for VBR addresses Comments and documentation have been updated throughout the code to reflect the changes.
2020-09-17 14:48:54 +02:00
.timer_stop:
.long _timer_stop
.callback:
.long _gint_inth_callback
.TCR0:
.long 0xa4490010
.tmu_callbacks:
.long _tmu_callbacks