Optimized memcmp

This is an optimized memcmp for AArch64.  This is a complete rewrite
using a different algorithm.  The previous version split into cases
where both inputs were aligned, the inputs were mutually aligned and
unaligned using a byte loop.  The new version combines all these cases,
while small inputs of less than 8 bytes are handled separately.

This allows the main code to be sped up using unaligned loads since
there are now at least 8 bytes to be compared.  After the first 8 bytes,
align the first input.  This ensures each iteration does at most one
unaligned access and mutually aligned inputs behave as aligned.
After the main loop, process the last 8 bytes using unaligned accesses.

This improves performance of (mutually) aligned cases by 25% and
unaligned by >500% (yes >6 times faster) on large inputs.

ChangeLog:
2017-06-28  Wilco Dijkstra  <wdijkstr@arm.com>

        * newlib/libc/machine/aarch64/memcmp.S (memcmp):
        Rewrite of optimized memcmp.

GLIBC benchtests/bench-memcmp.c performance comparison for Cortex-A53:

Length    1, alignment  1/ 1:		153%
Length    1, alignment  1/ 1:		119%
Length    1, alignment  1/ 1:		154%
Length    2, alignment  2/ 2:		121%
Length    2, alignment  2/ 2:		140%
Length    2, alignment  2/ 2:		121%
Length    3, alignment  3/ 3:		105%
Length    3, alignment  3/ 3:		105%
Length    3, alignment  3/ 3:		105%
Length    4, alignment  4/ 4:		155%
Length    4, alignment  4/ 4:		154%
Length    4, alignment  4/ 4:		161%
Length    5, alignment  5/ 5:		173%
Length    5, alignment  5/ 5:		173%
Length    5, alignment  5/ 5:		173%
Length    6, alignment  6/ 6:		145%
Length    6, alignment  6/ 6:		145%
Length    6, alignment  6/ 6:		145%
Length    7, alignment  7/ 7:		125%
Length    7, alignment  7/ 7:		125%
Length    7, alignment  7/ 7:		125%
Length    8, alignment  8/ 8:		111%
Length    8, alignment  8/ 8:		130%
Length    8, alignment  8/ 8:		124%
Length    9, alignment  9/ 9:		160%
Length    9, alignment  9/ 9:		160%
Length    9, alignment  9/ 9:		150%
Length   10, alignment 10/10:		170%
Length   10, alignment 10/10:		137%
Length   10, alignment 10/10:		150%
Length   11, alignment 11/11:		160%
Length   11, alignment 11/11:		160%
Length   11, alignment 11/11:		160%
Length   12, alignment 12/12:		146%
Length   12, alignment 12/12:		168%
Length   12, alignment 12/12:		156%
Length   13, alignment 13/13:		167%
Length   13, alignment 13/13:		167%
Length   13, alignment 13/13:		173%
Length   14, alignment 14/14:		167%
Length   14, alignment 14/14:		168%
Length   14, alignment 14/14:		168%
Length   15, alignment 15/15:		168%
Length   15, alignment 15/15:		173%
Length   15, alignment 15/15:		173%
Length    1, alignment  0/ 0:		134%
Length    1, alignment  0/ 0:		127%
Length    1, alignment  0/ 0:		119%
Length    2, alignment  0/ 0:		94%
Length    2, alignment  0/ 0:		94%
Length    2, alignment  0/ 0:		106%
Length    3, alignment  0/ 0:		82%
Length    3, alignment  0/ 0:		87%
Length    3, alignment  0/ 0:		82%
Length    4, alignment  0/ 0:		115%
Length    4, alignment  0/ 0:		115%
Length    4, alignment  0/ 0:		122%
Length    5, alignment  0/ 0:		127%
Length    5, alignment  0/ 0:		119%
Length    5, alignment  0/ 0:		127%
Length    6, alignment  0/ 0:		103%
Length    6, alignment  0/ 0:		100%
Length    6, alignment  0/ 0:		100%
Length    7, alignment  0/ 0:		82%
Length    7, alignment  0/ 0:		91%
Length    7, alignment  0/ 0:		87%
Length    8, alignment  0/ 0:		111%
Length    8, alignment  0/ 0:		124%
Length    8, alignment  0/ 0:		124%
Length    9, alignment  0/ 0:		136%
Length    9, alignment  0/ 0:		136%
Length    9, alignment  0/ 0:		136%
Length   10, alignment  0/ 0:		136%
Length   10, alignment  0/ 0:		135%
Length   10, alignment  0/ 0:		136%
Length   11, alignment  0/ 0:		136%
Length   11, alignment  0/ 0:		136%
Length   11, alignment  0/ 0:		135%
Length   12, alignment  0/ 0:		136%
Length   12, alignment  0/ 0:		136%
Length   12, alignment  0/ 0:		136%
Length   13, alignment  0/ 0:		135%
Length   13, alignment  0/ 0:		136%
Length   13, alignment  0/ 0:		136%
Length   14, alignment  0/ 0:		136%
Length   14, alignment  0/ 0:		136%
Length   14, alignment  0/ 0:		136%
Length   15, alignment  0/ 0:		136%
Length   15, alignment  0/ 0:		136%
Length   15, alignment  0/ 0:		136%
Length    4, alignment  0/ 0:		115%
Length    4, alignment  0/ 0:		115%
Length    4, alignment  0/ 0:		115%
Length   32, alignment  0/ 0:		127%
Length   32, alignment  7/ 2:		395%
Length   32, alignment  0/ 0:		127%
Length   32, alignment  0/ 0:		127%
Length    8, alignment  0/ 0:		111%
Length    8, alignment  0/ 0:		124%
Length    8, alignment  0/ 0:		124%
Length   64, alignment  0/ 0:		128%
Length   64, alignment  6/ 4:		475%
Length   64, alignment  0/ 0:		131%
Length   64, alignment  0/ 0:		134%
Length   16, alignment  0/ 0:		128%
Length   16, alignment  0/ 0:		119%
Length   16, alignment  0/ 0:		128%
Length  128, alignment  0/ 0:		129%
Length  128, alignment  5/ 6:		475%
Length  128, alignment  0/ 0:		130%
Length  128, alignment  0/ 0:		129%
Length   32, alignment  0/ 0:		126%
Length   32, alignment  0/ 0:		126%
Length   32, alignment  0/ 0:		126%
Length  256, alignment  0/ 0:		127%
Length  256, alignment  4/ 8:		545%
Length  256, alignment  0/ 0:		126%
Length  256, alignment  0/ 0:		128%
Length   64, alignment  0/ 0:		171%
Length   64, alignment  0/ 0:		171%
Length   64, alignment  0/ 0:		174%
Length  512, alignment  0/ 0:		126%
Length  512, alignment  3/10:		585%
Length  512, alignment  0/ 0:		126%
Length  512, alignment  0/ 0:		127%
Length  128, alignment  0/ 0:		129%
Length  128, alignment  0/ 0:		128%
Length  128, alignment  0/ 0:		129%
Length 1024, alignment  0/ 0:		125%
Length 1024, alignment  2/12:		611%
Length 1024, alignment  0/ 0:		126%
Length 1024, alignment  0/ 0:		126%
Length  256, alignment  0/ 0:		128%
Length  256, alignment  0/ 0:		127%
Length  256, alignment  0/ 0:		128%
Length 2048, alignment  0/ 0:		125%
Length 2048, alignment  1/14:		625%
Length 2048, alignment  0/ 0:		125%
Length 2048, alignment  0/ 0:		125%
Length  512, alignment  0/ 0:		126%
Length  512, alignment  0/ 0:		127%
Length  512, alignment  0/ 0:		127%
Length 4096, alignment  0/ 0:		125%
Length 4096, alignment  0/16:		125%
Length 4096, alignment  0/ 0:		125%
Length 4096, alignment  0/ 0:		125%
Length 1024, alignment  0/ 0:		126%
Length 1024, alignment  0/ 0:		126%
Length 1024, alignment  0/ 0:		126%
Length 8192, alignment  0/ 0:		125%
Length 8192, alignment 63/18:		636%
Length 8192, alignment  0/ 0:		125%
Length 8192, alignment  0/ 0:		125%
Length   16, alignment  1/ 2:		317%
Length   16, alignment  1/ 2:		317%
Length   16, alignment  1/ 2:		317%
Length   32, alignment  2/ 4:		395%
Length   32, alignment  2/ 4:		395%
Length   32, alignment  2/ 4:		398%
Length   64, alignment  3/ 6:		475%
Length   64, alignment  3/ 6:		475%
Length   64, alignment  3/ 6:		477%
Length  128, alignment  4/ 8:		479%
Length  128, alignment  4/ 8:		479%
Length  128, alignment  4/ 8:		479%
Length  256, alignment  5/10:		543%
Length  256, alignment  5/10:		539%
Length  256, alignment  5/10:		543%
Length  512, alignment  6/12:		585%
Length  512, alignment  6/12:		585%
Length  512, alignment  6/12:		585%
Length 1024, alignment  7/14:		611%
Length 1024, alignment  7/14:		611%
Length 1024, alignment  7/14:		611%
This commit is contained in:
Wilco Dijkstra 2017-06-29 14:32:09 +00:00 committed by Corinna Vinschen
parent 181d8393ae
commit c86063bdc0
1 changed files with 109 additions and 189 deletions

View File

@ -1,220 +1,140 @@
/* memcmp - compare memory
Copyright (c) 2013, Linaro Limited
Copyright (c) 2017, Samsung Austin R&D Center
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Linaro nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
/*
* Copyright (c) 2017 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if (defined (__OPTIMIZE_SIZE__) || defined (PREFER_SIZE_OVER_SPEED))
/* See memcmp-stub.c */
#else
/* Assumptions:
*
* ARMv8-a, AArch64
* ARMv8-a, AArch64, unaligned accesses.
*/
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
/* Parameters and result. */
#define src1 x0
#define src2 x1
#define limit x2
#define result x0
#define result w0
/* Internal variables. */
#define data1 x3
#define data1w w3
#define data2 x4
#define data2w w4
#define has_nul x5
#define diff x6
#define endloop x7
#define tmp1 x8
#define tmp2 x9
#define tmp3 x10
#define pos x11
#define limit_wd x12
#define mask x13
#define tmp1 x5
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
/* Small inputs of less than 8 bytes are handled separately. This allows the
main code to be sped up using unaligned loads since there are now at least
8 bytes to be compared. If the first 8 bytes are equal, align src1.
This ensures each iteration does at most one unaligned access even if both
src1 and src2 are unaligned, and mutually aligned inputs behave as if
aligned. After the main loop, process the last 8 bytes using unaligned
accesses. */
def_fn memcmp p2align=6
cbz limit, .Lret0
eor tmp1, src1, src2
tst tmp1, #7
b.ne .Lmisaligned8
ands tmp1, src1, #7
b.ne .Lmutual_align
add limit_wd, limit, #7
lsr limit_wd, limit_wd, #3
/* Start of performance-critical section -- one 64B cache line. */
.Lloop_aligned:
ldr data1, [src1], #8
ldr data2, [src2], #8
.Lstart_realigned:
subs limit_wd, limit_wd, #1
eor diff, data1, data2 /* Non-zero if differences found. */
csinv endloop, diff, xzr, ne /* Last Dword or differences. */
cbz endloop, .Lloop_aligned
/* End of performance-critical section -- one 64B cache line. */
subs limit, limit, 8
b.lo .Lless8
/* Not reached the limit, must have found a diff. */
cbnz limit_wd, .Lnot_limit
/* Limit >= 8, so check first 8 bytes using unaligned loads. */
ldr data1, [src1], 8
ldr data2, [src2], 8
and tmp1, src1, 7
add limit, limit, tmp1
cmp data1, data2
bne .Lreturn
/* Limit % 8 == 0 => all bytes significant. */
ands limit, limit, #7
b.eq .Lnot_limit
/* Align src1 and adjust src2 with bytes not yet done. */
sub src1, src1, tmp1
sub src2, src2, tmp1
lsl limit, limit, #3 /* Bits -> bytes. */
mov mask, #~0
#ifdef __AARCH64EB__
lsr mask, mask, limit
#else
lsl mask, mask, limit
#endif
bic data1, data1, mask
bic data2, data2, mask
subs limit, limit, 8
b.ls .Llast_bytes
orr diff, diff, mask
.Lnot_limit:
/* Loop performing 8 bytes per iteration using aligned src1.
Limit is pre-decremented by 8 and must be larger than zero.
Exit if <= 8 bytes left to do or if the data is not equal. */
.p2align 4
.Lloop8:
ldr data1, [src1], 8
ldr data2, [src2], 8
subs limit, limit, 8
ccmp data1, data2, 0, hi /* NZCV = 0b0000. */
b.eq .Lloop8
#ifndef __AARCH64EB__
rev diff, diff
cmp data1, data2
bne .Lreturn
/* Compare last 1-8 bytes using unaligned access. */
.Llast_bytes:
ldr data1, [src1, limit]
ldr data2, [src2, limit]
/* Compare data bytes and set return value to 0, -1 or 1. */
.Lreturn:
#ifndef __AARCH64EB__
rev data1, data1
rev data2, data2
#endif
/* The MS-non-zero bit of DIFF marks either the first bit
that is different, or the end of the significant data.
Shifting left now will bring the critical information into the
top bits. */
clz pos, diff
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
cmp data1, data2
.Lret_eq:
cset result, ne
cneg result, result, lo
ret
.p2align 4
/* Compare up to 8 bytes. Limit is [-8..-1]. */
.Lless8:
adds limit, limit, 4
b.lo .Lless4
ldr data1w, [src1], 4
ldr data2w, [src2], 4
cmp data1w, data2w
b.ne .Lreturn
sub limit, limit, 4
.Lless4:
adds limit, limit, 4
beq .Lret_eq
.Lbyte_loop:
ldrb data1w, [src1], 1
ldrb data2w, [src2], 1
subs limit, limit, 1
ccmp data1w, data2w, 0, ne /* NZCV = 0b0000. */
b.eq .Lbyte_loop
sub result, data1w, data2w
ret
.Lmutual_align:
/* Sources are mutually aligned, but are not currently at an
alignment boundary. Round down the addresses and then mask off
the bytes that precede the start point. */
bic src1, src1, #7
bic src2, src2, #7
add limit, limit, tmp1 /* Adjust the limit for the extra. */
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
ldr data1, [src1], #8
neg tmp1, tmp1 /* Bits to alignment -64. */
ldr data2, [src2], #8
mov tmp2, #~0
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#else
/* Little-endian. Early bytes are at LSB. */
lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#endif
add limit_wd, limit, #7
orr data1, data1, tmp2
orr data2, data2, tmp2
lsr limit_wd, limit_wd, #3
b .Lstart_realigned
.Lret0:
mov result, #0
ret
.p2align 6
.Lmisaligned8:
cmp limit, #8
b.lo .LmisalignedLt8
.LunalignedGe8 :
/* Load the first dword with both src potentially unaligned. */
ldr data1, [src1]
ldr data2, [src2]
eor diff, data1, data2 /* Non-zero if differences found. */
cbnz diff, .Lnot_limit
/* Sources are not aligned: align one of the sources. */
and tmp1, src1, #0x7
orr tmp3, xzr, #0x8
sub pos, tmp3, tmp1
/* Increment SRC pointers by POS so SRC1 is word-aligned. */
add src1, src1, pos
add src2, src2, pos
sub limit, limit, pos
lsr limit_wd, limit, #3
cmp limit_wd, #0
/* save #bytes to go back to be able to read 8byte at end
pos=negative offset position to read 8 bytes when len%8 != 0 */
and limit, limit, #7
sub pos, limit, #8
b .Lstart_part_realigned
.p2align 5
.Lloop_part_aligned:
ldr data1, [src1], #8
ldr data2, [src2], #8
subs limit_wd, limit_wd, #1
.Lstart_part_realigned:
eor diff, data1, data2 /* Non-zero if differences found. */
cbnz diff, .Lnot_limit
b.ne .Lloop_part_aligned
/* process leftover bytes: read the leftover bytes, starting with
negative offset - so we can load 8 bytes. */
ldr data1, [src1, pos]
ldr data2, [src2, pos]
eor diff, data1, data2 /* Non-zero if differences found. */
b .Lnot_limit
.LmisalignedLt8:
sub limit, limit, #1
1:
ldrb data1w, [src1], #1
ldrb data2w, [src2], #1
subs limit, limit, #1
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
b.eq 1b
sub result, data1, data2
ret
.size memcmp, . - memcmp
.size memcmp, . - memcmp
#endif