/* * Copyright (c) 2011 Aeroflex Gaisler * * BSD license: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef _LINUX_JIFFIES_H #define _LINUX_JIFFIES_H #include #include #include /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can * improve accuracy by shifting LSH bits, hence calculating: * (NOM << LSH) / DEN * This however means trouble for large NOM, because (NOM << LSH) may no * longer fit in 32 bits. The following way of calculating this gives us * some slack, under the following conditions: * - (NOM / DEN) fits in (32 - LSH) bits. * - (NOM % DEN) fits in (32 - LSH) bits. */ #define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \ + (((NOM % DEN) << LSH) + DEN / 2) / DEN) /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */ #define TICK_NSEC (SH_DIV (1000000UL * 1000, (HZ<<8), 8)) /* * The 64-bit value is not volatile - you MUST NOT read it * without sampling the sequence number in xtime_lock. */ extern u64 jiffies_64; extern struct timespec xtime __attribute__ ((aligned (16))); #define jiffies (*((unsigned long *)(((unsigned long)(&jiffies_64))+4))) /* * These inlines deal with timer wrapping correctly. You are * strongly encouraged to use them * 1. Because people otherwise forget * 2. Because if the timer wrap changes in future you won't have to * alter your driver code. * * time_after(a,b) returns true if the time a is after time b. * * Do this with "<0" and ">=0" to only test the sign of the result. A * good compiler would generate better code (and a really good compiler * wouldn't care). Gcc is currently neither. */ #define time_after(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)(b) - (long)(a) < 0)) #define time_before(a,b) time_after(b,a) #define time_after_eq(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)(a) - (long)(b) >= 0)) #define time_before_eq(a,b) time_after_eq(b,a) /* * Have the 32 bit jiffies value wrap 5 minutes after boot * so jiffies wrap bugs show up earlier. */ #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) static inline void set_normalized_timespec (struct timespec *ts, time_t sec, long nsec) { while (nsec > NSEC_PER_SEC) { nsec -= NSEC_PER_SEC; ++sec; } while (nsec < 0) { nsec += NSEC_PER_SEC; --sec; } ts->tv_sec = sec; ts->tv_nsec = nsec; } #endif