\input texinfo @c -*-texinfo-*- @c %**start of header @setfilename standards.info @settitle GNU Coding Standards @c This date is automagically updated when you save this file: @set lastupdate April 12, 2010 @c %**end of header @dircategory GNU organization @direntry * Standards: (standards). GNU coding standards. @end direntry @c @setchapternewpage odd @setchapternewpage off @c Put everything in one index (arbitrarily chosen to be the concept index). @syncodeindex fn cp @syncodeindex ky cp @syncodeindex pg cp @syncodeindex vr cp @c This is used by a cross ref in make-stds.texi @set CODESTD 1 @copying The GNU coding standards, last updated @value{lastupdate}. Copyright @copyright{} 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end copying @titlepage @title GNU Coding Standards @author Richard Stallman, et al. @author last updated @value{lastupdate} @page @vskip 0pt plus 1filll @insertcopying @end titlepage @contents @ifnottex @node Top, Preface, (dir), (dir) @top Version @insertcopying @end ifnottex @menu * Preface:: About the GNU Coding Standards. * Legal Issues:: Keeping free software free. * Design Advice:: General program design. * Program Behavior:: Program behavior for all programs * Writing C:: Making the best use of C. * Documentation:: Documenting programs. * Managing Releases:: The release process. * References:: Mentioning non-free software or documentation. * GNU Free Documentation License:: Copying and sharing this manual. * Index:: @end menu @node Preface @chapter About the GNU Coding Standards The GNU Coding Standards were written by Richard Stallman and other GNU Project volunteers. Their purpose is to make the GNU system clean, consistent, and easy to install. This document can also be read as a guide to writing portable, robust and reliable programs. It focuses on programs written in C, but many of the rules and principles are useful even if you write in another programming language. The rules often state reasons for writing in a certain way. @cindex where to obtain @code{standards.texi} @cindex downloading this manual If you did not obtain this file directly from the GNU project and recently, please check for a newer version. You can get the GNU Coding Standards from the GNU web server in many different formats, including the Texinfo source, PDF, HTML, DVI, plain text, and more, at: @uref{http://www.gnu.org/prep/standards/}. If you are maintaining an official GNU package, in addition to this document, please read and follow the GNU maintainer information (@pxref{Top, , Contents, maintain, Information for Maintainers of GNU Software}). @cindex @code{gnustandards-commit@@gnu.org} mailing list If you want to receive diffs for every change to these GNU documents, join the mailing list @code{gnustandards-commit@@gnu.org}, via the web interface at @url{http://lists.gnu.org/mailman/listinfo/gnustandards-commit}. Archives are also available there. @cindex @code{bug-standards@@gnu.org} email address @cindex Savannah repository for gnustandards @cindex gnustandards project repository Please send corrections or suggestions for this document to @email{bug-standards@@gnu.org}. If you make a suggestion, please include a suggested new wording for it, to help us consider the suggestion efficiently. We prefer a context diff to the Texinfo source, but if that's difficult for you, you can make a context diff for some other version of this document, or propose it in any way that makes it clear. The source repository for this document can be found at @url{http://savannah.gnu.org/projects/gnustandards}. These standards cover the minimum of what is important when writing a GNU package. Likely, the need for additional standards will come up. Sometimes, you might suggest that such standards be added to this document. If you think your standards would be generally useful, please do suggest them. You should also set standards for your package on many questions not addressed or not firmly specified here. The most important point is to be self-consistent---try to stick to the conventions you pick, and try to document them as much as possible. That way, your program will be more maintainable by others. The GNU Hello program serves as an example of how to follow the GNU coding standards for a trivial program. @uref{http://www.gnu.org/software/hello/hello.html}. This release of the GNU Coding Standards was last updated @value{lastupdate}. @node Legal Issues @chapter Keeping Free Software Free @cindex legal aspects This chapter discusses how you can make sure that GNU software avoids legal difficulties, and other related issues. @menu * Reading Non-Free Code:: Referring to proprietary programs. * Contributions:: Accepting contributions. * Trademarks:: How we deal with trademark issues. @end menu @node Reading Non-Free Code @section Referring to Proprietary Programs @cindex proprietary programs @cindex avoiding proprietary code Don't in any circumstances refer to Unix source code for or during your work on GNU! (Or to any other proprietary programs.) If you have a vague recollection of the internals of a Unix program, this does not absolutely mean you can't write an imitation of it, but do try to organize the imitation internally along different lines, because this is likely to make the details of the Unix version irrelevant and dissimilar to your results. For example, Unix utilities were generally optimized to minimize memory use; if you go for speed instead, your program will be very different. You could keep the entire input file in memory and scan it there instead of using stdio. Use a smarter algorithm discovered more recently than the Unix program. Eliminate use of temporary files. Do it in one pass instead of two (we did this in the assembler). Or, on the contrary, emphasize simplicity instead of speed. For some applications, the speed of today's computers makes simpler algorithms adequate. Or go for generality. For example, Unix programs often have static tables or fixed-size strings, which make for arbitrary limits; use dynamic allocation instead. Make sure your program handles NULs and other funny characters in the input files. Add a programming language for extensibility and write part of the program in that language. Or turn some parts of the program into independently usable libraries. Or use a simple garbage collector instead of tracking precisely when to free memory, or use a new GNU facility such as obstacks. @node Contributions @section Accepting Contributions @cindex legal papers @cindex accepting contributions If the program you are working on is copyrighted by the Free Software Foundation, then when someone else sends you a piece of code to add to the program, we need legal papers to use it---just as we asked you to sign papers initially. @emph{Each} person who makes a nontrivial contribution to a program must sign some sort of legal papers in order for us to have clear title to the program; the main author alone is not enough. So, before adding in any contributions from other people, please tell us, so we can arrange to get the papers. Then wait until we tell you that we have received the signed papers, before you actually use the contribution. This applies both before you release the program and afterward. If you receive diffs to fix a bug, and they make significant changes, we need legal papers for that change. This also applies to comments and documentation files. For copyright law, comments and code are just text. Copyright applies to all kinds of text, so we need legal papers for all kinds. We know it is frustrating to ask for legal papers; it's frustrating for us as well. But if you don't wait, you are going out on a limb---for example, what if the contributor's employer won't sign a disclaimer? You might have to take that code out again! You don't need papers for changes of a few lines here or there, since they are not significant for copyright purposes. Also, you don't need papers if all you get from the suggestion is some ideas, not actual code which you use. For example, if someone sent you one implementation, but you write a different implementation of the same idea, you don't need to get papers. The very worst thing is if you forget to tell us about the other contributor. We could be very embarrassed in court some day as a result. We have more detailed advice for maintainers of programs; if you have reached the stage of actually maintaining a program for GNU (whether released or not), please ask us for a copy. It is also available online for your perusal: @uref{http://www.gnu.org/prep/maintain/}. @node Trademarks @section Trademarks @cindex trademarks Please do not include any trademark acknowledgements in GNU software packages or documentation. Trademark acknowledgements are the statements that such-and-such is a trademark of so-and-so. The GNU Project has no objection to the basic idea of trademarks, but these acknowledgements feel like kowtowing, and there is no legal requirement for them, so we don't use them. What is legally required, as regards other people's trademarks, is to avoid using them in ways which a reader might reasonably understand as naming or labeling our own programs or activities. For example, since ``Objective C'' is (or at least was) a trademark, we made sure to say that we provide a ``compiler for the Objective C language'' rather than an ``Objective C compiler''. The latter would have been meant as a shorter way of saying the former, but it does not explicitly state the relationship, so it could be misinterpreted as using ``Objective C'' as a label for the compiler rather than for the language. Please don't use ``win'' as an abbreviation for Microsoft Windows in GNU software or documentation. In hacker terminology, calling something a ``win'' is a form of praise. If you wish to praise Microsoft Windows when speaking on your own, by all means do so, but not in GNU software. Usually we write the name ``Windows'' in full, but when brevity is very important (as in file names and sometimes symbol names), we abbreviate it to ``w''. For instance, the files and functions in Emacs that deal with Windows start with @samp{w32}. @node Design Advice @chapter General Program Design @cindex program design This chapter discusses some of the issues you should take into account when designing your program. @c Standard or ANSI C @c @c In 1989 the American National Standards Institute (ANSI) standardized @c C as standard X3.159-1989. In December of that year the @c International Standards Organization ISO adopted the ANSI C standard @c making minor changes. In 1990 ANSI then re-adopted ISO standard @c C. This version of C is known as either ANSI C or Standard C. @c A major revision of the C Standard appeared in 1999. @menu * Source Language:: Which languages to use. * Compatibility:: Compatibility with other implementations. * Using Extensions:: Using non-standard features. * Standard C:: Using standard C features. * Conditional Compilation:: Compiling code only if a conditional is true. @end menu @node Source Language @section Which Languages to Use @cindex programming languages When you want to use a language that gets compiled and runs at high speed, the best language to use is C. Using another language is like using a non-standard feature: it will cause trouble for users. Even if GCC supports the other language, users may find it inconvenient to have to install the compiler for that other language in order to build your program. For example, if you write your program in C++, people will have to install the GNU C++ compiler in order to compile your program. C has one other advantage over C++ and other compiled languages: more people know C, so more people will find it easy to read and modify the program if it is written in C. So in general it is much better to use C, rather than the comparable alternatives. But there are two exceptions to that conclusion: @itemize @bullet @item It is no problem to use another language to write a tool specifically intended for use with that language. That is because the only people who want to build the tool will be those who have installed the other language anyway. @item If an application is of interest only to a narrow part of the community, then the question of which language it is written in has less effect on other people, so you may as well please yourself. @end itemize Many programs are designed to be extensible: they include an interpreter for a language that is higher level than C. Often much of the program is written in that language, too. The Emacs editor pioneered this technique. @cindex Guile @cindex GNOME and Guile The standard extensibility interpreter for GNU software is Guile (@uref{http://www.gnu.org/@/software/@/guile/}), which implements the language Scheme (an especially clean and simple dialect of Lisp). Guile also includes bindings for GTK+/GNOME, making it practical to write modern GUI functionality within Guile. We don't reject programs written in other ``scripting languages'' such as Perl and Python, but using Guile is very important for the overall consistency of the GNU system. @node Compatibility @section Compatibility with Other Implementations @cindex compatibility with C and @sc{posix} standards @cindex @sc{posix} compatibility With occasional exceptions, utility programs and libraries for GNU should be upward compatible with those in Berkeley Unix, and upward compatible with Standard C if Standard C specifies their behavior, and upward compatible with @sc{posix} if @sc{posix} specifies their behavior. When these standards conflict, it is useful to offer compatibility modes for each of them. @cindex options for compatibility Standard C and @sc{posix} prohibit many kinds of extensions. Feel free to make the extensions anyway, and include a @samp{--ansi}, @samp{--posix}, or @samp{--compatible} option to turn them off. However, if the extension has a significant chance of breaking any real programs or scripts, then it is not really upward compatible. So you should try to redesign its interface to make it upward compatible. @cindex @code{POSIXLY_CORRECT}, environment variable Many GNU programs suppress extensions that conflict with @sc{posix} if the environment variable @code{POSIXLY_CORRECT} is defined (even if it is defined with a null value). Please make your program recognize this variable if appropriate. When a feature is used only by users (not by programs or command files), and it is done poorly in Unix, feel free to replace it completely with something totally different and better. (For example, @code{vi} is replaced with Emacs.) But it is nice to offer a compatible feature as well. (There is a free @code{vi} clone, so we offer it.) Additional useful features are welcome regardless of whether there is any precedent for them. @node Using Extensions @section Using Non-standard Features @cindex non-standard extensions Many GNU facilities that already exist support a number of convenient extensions over the comparable Unix facilities. Whether to use these extensions in implementing your program is a difficult question. On the one hand, using the extensions can make a cleaner program. On the other hand, people will not be able to build the program unless the other GNU tools are available. This might cause the program to work on fewer kinds of machines. With some extensions, it might be easy to provide both alternatives. For example, you can define functions with a ``keyword'' @code{INLINE} and define that as a macro to expand into either @code{inline} or nothing, depending on the compiler. In general, perhaps it is best not to use the extensions if you can straightforwardly do without them, but to use the extensions if they are a big improvement. An exception to this rule are the large, established programs (such as Emacs) which run on a great variety of systems. Using GNU extensions in such programs would make many users unhappy, so we don't do that. Another exception is for programs that are used as part of compilation: anything that must be compiled with other compilers in order to bootstrap the GNU compilation facilities. If these require the GNU compiler, then no one can compile them without having them installed already. That would be extremely troublesome in certain cases. @node Standard C @section Standard C and Pre-Standard C @cindex @sc{ansi} C standard 1989 Standard C is widespread enough now that it is ok to use its features in new programs. There is one exception: do not ever use the ``trigraph'' feature of Standard C. 1999 Standard C is not widespread yet, so please do not require its features in programs. It is ok to use its features if they are present. However, it is easy to support pre-standard compilers in most programs, so if you know how to do that, feel free. If a program you are maintaining has such support, you should try to keep it working. @cindex function prototypes To support pre-standard C, instead of writing function definitions in standard prototype form, @example int foo (int x, int y) @dots{} @end example @noindent write the definition in pre-standard style like this, @example int foo (x, y) int x, y; @dots{} @end example @noindent and use a separate declaration to specify the argument prototype: @example int foo (int, int); @end example You need such a declaration anyway, in a header file, to get the benefit of prototypes in all the files where the function is called. And once you have the declaration, you normally lose nothing by writing the function definition in the pre-standard style. This technique does not work for integer types narrower than @code{int}. If you think of an argument as being of a type narrower than @code{int}, declare it as @code{int} instead. There are a few special cases where this technique is hard to use. For example, if a function argument needs to hold the system type @code{dev_t}, you run into trouble, because @code{dev_t} is shorter than @code{int} on some machines; but you cannot use @code{int} instead, because @code{dev_t} is wider than @code{int} on some machines. There is no type you can safely use on all machines in a non-standard definition. The only way to support non-standard C and pass such an argument is to check the width of @code{dev_t} using Autoconf and choose the argument type accordingly. This may not be worth the trouble. In order to support pre-standard compilers that do not recognize prototypes, you may want to use a preprocessor macro like this: @example /* Declare the prototype for a general external function. */ #if defined (__STDC__) || defined (WINDOWSNT) #define P_(proto) proto #else #define P_(proto) () #endif @end example @node Conditional Compilation @section Conditional Compilation When supporting configuration options already known when building your program we prefer using @code{if (... )} over conditional compilation, as in the former case the compiler is able to perform more extensive checking of all possible code paths. For example, please write @smallexample if (HAS_FOO) ... else ... @end smallexample @noindent instead of: @smallexample #ifdef HAS_FOO ... #else ... #endif @end smallexample A modern compiler such as GCC will generate exactly the same code in both cases, and we have been using similar techniques with good success in several projects. Of course, the former method assumes that @code{HAS_FOO} is defined as either 0 or 1. While this is not a silver bullet solving all portability problems, and is not always appropriate, following this policy would have saved GCC developers many hours, or even days, per year. In the case of function-like macros like @code{REVERSIBLE_CC_MODE} in GCC which cannot be simply used in @code{if (...)} statements, there is an easy workaround. Simply introduce another macro @code{HAS_REVERSIBLE_CC_MODE} as in the following example: @smallexample #ifdef REVERSIBLE_CC_MODE #define HAS_REVERSIBLE_CC_MODE 1 #else #define HAS_REVERSIBLE_CC_MODE 0 #endif @end smallexample @node Program Behavior @chapter Program Behavior for All Programs This chapter describes conventions for writing robust software. It also describes general standards for error messages, the command line interface, and how libraries should behave. @menu * Non-GNU Standards:: We consider standards such as POSIX; we don't "obey" them. * Semantics:: Writing robust programs. * Libraries:: Library behavior. * Errors:: Formatting error messages. * User Interfaces:: Standards about interfaces generally. * Graphical Interfaces:: Standards for graphical interfaces. * Command-Line Interfaces:: Standards for command line interfaces. * Option Table:: Table of long options. * OID Allocations:: Table of OID slots for GNU. * Memory Usage:: When and how to care about memory needs. * File Usage:: Which files to use, and where. @end menu @node Non-GNU Standards @section Non-GNU Standards The GNU Project regards standards published by other organizations as suggestions, not orders. We consider those standards, but we do not ``obey'' them. In developing a GNU program, you should implement an outside standard's specifications when that makes the GNU system better overall in an objective sense. When it doesn't, you shouldn't. In most cases, following published standards is convenient for users---it means that their programs or scripts will work more portably. For instance, GCC implements nearly all the features of Standard C as specified by that standard. C program developers would be unhappy if it did not. And GNU utilities mostly follow specifications of POSIX.2; shell script writers and users would be unhappy if our programs were incompatible. But we do not follow either of these specifications rigidly, and there are specific points on which we decided not to follow them, so as to make the GNU system better for users. For instance, Standard C says that nearly all extensions to C are prohibited. How silly! GCC implements many extensions, some of which were later adopted as part of the standard. If you want these constructs to give an error message as ``required'' by the standard, you must specify @samp{--pedantic}, which was implemented only so that we can say ``GCC is a 100% implementation of the standard,'' not because there is any reason to actually use it. POSIX.2 specifies that @samp{df} and @samp{du} must output sizes by default in units of 512 bytes. What users want is units of 1k, so that is what we do by default. If you want the ridiculous behavior ``required'' by POSIX, you must set the environment variable @samp{POSIXLY_CORRECT} (which was originally going to be named @samp{POSIX_ME_HARDER}). GNU utilities also depart from the letter of the POSIX.2 specification when they support long-named command-line options, and intermixing options with ordinary arguments. This minor incompatibility with POSIX is never a problem in practice, and it is very useful. In particular, don't reject a new feature, or remove an old one, merely because a standard says it is ``forbidden'' or ``deprecated.'' @node Semantics @section Writing Robust Programs @cindex arbitrary limits on data Avoid arbitrary limits on the length or number of @emph{any} data structure, including file names, lines, files, and symbols, by allocating all data structures dynamically. In most Unix utilities, ``long lines are silently truncated''. This is not acceptable in a GNU utility. @cindex @code{NUL} characters Utilities reading files should not drop NUL characters, or any other nonprinting characters @emph{including those with codes above 0177}. The only sensible exceptions would be utilities specifically intended for interface to certain types of terminals or printers that can't handle those characters. Whenever possible, try to make programs work properly with sequences of bytes that represent multibyte characters, using encodings such as UTF-8 and others. @cindex error messages Check every system call for an error return, unless you know you wish to ignore errors. Include the system error text (from @code{perror} or equivalent) in @emph{every} error message resulting from a failing system call, as well as the name of the file if any and the name of the utility. Just ``cannot open foo.c'' or ``stat failed'' is not sufficient. @cindex @code{malloc} return value @cindex memory allocation failure Check every call to @code{malloc} or @code{realloc} to see if it returned zero. Check @code{realloc} even if you are making the block smaller; in a system that rounds block sizes to a power of 2, @code{realloc} may get a different block if you ask for less space. In Unix, @code{realloc} can destroy the storage block if it returns zero. GNU @code{realloc} does not have this bug: if it fails, the original block is unchanged. Feel free to assume the bug is fixed. If you wish to run your program on Unix, and wish to avoid lossage in this case, you can use the GNU @code{malloc}. You must expect @code{free} to alter the contents of the block that was freed. Anything you want to fetch from the block, you must fetch before calling @code{free}. If @code{malloc} fails in a noninteractive program, make that a fatal error. In an interactive program (one that reads commands from the user), it is better to abort the command and return to the command reader loop. This allows the user to kill other processes to free up virtual memory, and then try the command again. @cindex command-line arguments, decoding Use @code{getopt_long} to decode arguments, unless the argument syntax makes this unreasonable. When static storage is to be written in during program execution, use explicit C code to initialize it. Reserve C initialized declarations for data that will not be changed. @c ADR: why? Try to avoid low-level interfaces to obscure Unix data structures (such as file directories, utmp, or the layout of kernel memory), since these are less likely to work compatibly. If you need to find all the files in a directory, use @code{readdir} or some other high-level interface. These are supported compatibly by GNU. @cindex signal handling The preferred signal handling facilities are the BSD variant of @code{signal}, and the @sc{posix} @code{sigaction} function; the alternative USG @code{signal} interface is an inferior design. Nowadays, using the @sc{posix} signal functions may be the easiest way to make a program portable. If you use @code{signal}, then on GNU/Linux systems running GNU libc version 1, you should include @file{bsd/signal.h} instead of @file{signal.h}, so as to get BSD behavior. It is up to you whether to support systems where @code{signal} has only the USG behavior, or give up on them. @cindex impossible conditions In error checks that detect ``impossible'' conditions, just abort. There is usually no point in printing any message. These checks indicate the existence of bugs. Whoever wants to fix the bugs will have to read the source code and run a debugger. So explain the problem with comments in the source. The relevant data will be in variables, which are easy to examine with the debugger, so there is no point moving them elsewhere. Do not use a count of errors as the exit status for a program. @emph{That does not work}, because exit status values are limited to 8 bits (0 through 255). A single run of the program might have 256 errors; if you try to return 256 as the exit status, the parent process will see 0 as the status, and it will appear that the program succeeded. @cindex temporary files @cindex @code{TMPDIR} environment variable If you make temporary files, check the @code{TMPDIR} environment variable; if that variable is defined, use the specified directory instead of @file{/tmp}. In addition, be aware that there is a possible security problem when creating temporary files in world-writable directories. In C, you can avoid this problem by creating temporary files in this manner: @example fd = open (filename, O_WRONLY | O_CREAT | O_EXCL, 0600); @end example @noindent or by using the @code{mkstemps} function from libiberty. In bash, use @code{set -C} to avoid this problem. @node Libraries @section Library Behavior @cindex libraries Try to make library functions reentrant. If they need to do dynamic storage allocation, at least try to avoid any nonreentrancy aside from that of @code{malloc} itself. Here are certain name conventions for libraries, to avoid name conflicts. Choose a name prefix for the library, more than two characters long. All external function and variable names should start with this prefix. In addition, there should only be one of these in any given library member. This usually means putting each one in a separate source file. An exception can be made when two external symbols are always used together, so that no reasonable program could use one without the other; then they can both go in the same file. External symbols that are not documented entry points for the user should have names beginning with @samp{_}. The @samp{_} should be followed by the chosen name prefix for the library, to prevent collisions with other libraries. These can go in the same files with user entry points if you like. Static functions and variables can be used as you like and need not fit any naming convention. @node Errors @section Formatting Error Messages @cindex formatting error messages @cindex error messages, formatting Error messages from compilers should look like this: @example @var{source-file-name}:@var{lineno}: @var{message} @end example @noindent If you want to mention the column number, use one of these formats: @example @var{source-file-name}:@var{lineno}:@var{column}: @var{message} @var{source-file-name}:@var{lineno}.@var{column}: @var{message} @end example @noindent Line numbers should start from 1 at the beginning of the file, and column numbers should start from 1 at the beginning of the line. (Both of these conventions are chosen for compatibility.) Calculate column numbers assuming that space and all ASCII printing characters have equal width, and assuming tab stops every 8 columns. The error message can also give both the starting and ending positions of the erroneous text. There are several formats so that you can avoid redundant information such as a duplicate line number. Here are the possible formats: @example @var{source-file-name}:@var{lineno-1}.@var{column-1}-@var{lineno-2}.@var{column-2}: @var{message} @var{source-file-name}:@var{lineno-1}.@var{column-1}-@var{column-2}: @var{message} @var{source-file-name}:@var{lineno-1}-@var{lineno-2}: @var{message} @end example @noindent When an error is spread over several files, you can use this format: @example @var{file-1}:@var{lineno-1}.@var{column-1}-@var{file-2}:@var{lineno-2}.@var{column-2}: @var{message} @end example Error messages from other noninteractive programs should look like this: @example @var{program}:@var{source-file-name}:@var{lineno}: @var{message} @end example @noindent when there is an appropriate source file, or like this: @example @var{program}: @var{message} @end example @noindent when there is no relevant source file. If you want to mention the column number, use this format: @example @var{program}:@var{source-file-name}:@var{lineno}:@var{column}: @var{message} @end example In an interactive program (one that is reading commands from a terminal), it is better not to include the program name in an error message. The place to indicate which program is running is in the prompt or with the screen layout. (When the same program runs with input from a source other than a terminal, it is not interactive and would do best to print error messages using the noninteractive style.) The string @var{message} should not begin with a capital letter when it follows a program name and/or file name, because that isn't the beginning of a sentence. (The sentence conceptually starts at the beginning of the line.) Also, it should not end with a period. Error messages from interactive programs, and other messages such as usage messages, should start with a capital letter. But they should not end with a period. @node User Interfaces @section Standards for Interfaces Generally @cindex program name and its behavior @cindex behavior, dependent on program's name Please don't make the behavior of a utility depend on the name used to invoke it. It is useful sometimes to make a link to a utility with a different name, and that should not change what it does. Instead, use a run time option or a compilation switch or both to select among the alternate behaviors. @cindex output device and program's behavior Likewise, please don't make the behavior of the program depend on the type of output device it is used with. Device independence is an important principle of the system's design; do not compromise it merely to save someone from typing an option now and then. (Variation in error message syntax when using a terminal is ok, because that is a side issue that people do not depend on.) If you think one behavior is most useful when the output is to a terminal, and another is most useful when the output is a file or a pipe, then it is usually best to make the default behavior the one that is useful with output to a terminal, and have an option for the other behavior. Compatibility requires certain programs to depend on the type of output device. It would be disastrous if @code{ls} or @code{sh} did not do so in the way all users expect. In some of these cases, we supplement the program with a preferred alternate version that does not depend on the output device type. For example, we provide a @code{dir} program much like @code{ls} except that its default output format is always multi-column format. @node Graphical Interfaces @section Standards for Graphical Interfaces @cindex graphical user interface @cindex interface styles @cindex user interface styles @cindex GTK+ When you write a program that provides a graphical user interface, please make it work with the X Window System and the GTK+ toolkit unless the functionality specifically requires some alternative (for example, ``displaying jpeg images while in console mode''). In addition, please provide a command-line interface to control the functionality. (In many cases, the graphical user interface can be a separate program which invokes the command-line program.) This is so that the same jobs can be done from scripts. @cindex CORBA @cindex GNOME @cindex D-bus @cindex keyboard interface @cindex library interface Please also consider providing a D-bus interface for use from other running programs, such as within GNOME. (GNOME used to use CORBA for this, but that is being phased out.) In addition, consider providing a library interface (for use from C), and perhaps a keyboard-driven console interface (for use by users from console mode). Once you are doing the work to provide the functionality and the graphical interface, these won't be much extra work. @node Command-Line Interfaces @section Standards for Command Line Interfaces @cindex command-line interface @findex getopt It is a good idea to follow the @sc{posix} guidelines for the command-line options of a program. The easiest way to do this is to use @code{getopt} to parse them. Note that the GNU version of @code{getopt} will normally permit options anywhere among the arguments unless the special argument @samp{--} is used. This is not what @sc{posix} specifies; it is a GNU extension. @cindex long-named options Please define long-named options that are equivalent to the single-letter Unix-style options. We hope to make GNU more user friendly this way. This is easy to do with the GNU function @code{getopt_long}. One of the advantages of long-named options is that they can be consistent from program to program. For example, users should be able to expect the ``verbose'' option of any GNU program which has one, to be spelled precisely @samp{--verbose}. To achieve this uniformity, look at the table of common long-option names when you choose the option names for your program (@pxref{Option Table}). It is usually a good idea for file names given as ordinary arguments to be input files only; any output files would be specified using options (preferably @samp{-o} or @samp{--output}). Even if you allow an output file name as an ordinary argument for compatibility, try to provide an option as another way to specify it. This will lead to more consistency among GNU utilities, and fewer idiosyncrasies for users to remember. @cindex standard command-line options @cindex options, standard command-line @cindex CGI programs, standard options for @cindex PATH_INFO, specifying standard options as All programs should support two standard options: @samp{--version} and @samp{--help}. CGI programs should accept these as command-line options, and also if given as the @env{PATH_INFO}; for instance, visiting @url{http://example.org/p.cgi/--help} in a browser should output the same information as invoking @samp{p.cgi --help} from the command line. @menu * --version:: The standard output for --version. * --help:: The standard output for --help. @end menu @node --version @subsection @option{--version} @cindex @samp{--version} output The standard @code{--version} option should direct the program to print information about its name, version, origin and legal status, all on standard output, and then exit successfully. Other options and arguments should be ignored once this is seen, and the program should not perform its normal function. @cindex canonical name of a program @cindex program's canonical name The first line is meant to be easy for a program to parse; the version number proper starts after the last space. In addition, it contains the canonical name for this program, in this format: @example GNU Emacs 19.30 @end example @noindent The program's name should be a constant string; @emph{don't} compute it from @code{argv[0]}. The idea is to state the standard or canonical name for the program, not its file name. There are other ways to find out the precise file name where a command is found in @code{PATH}. If the program is a subsidiary part of a larger package, mention the package name in parentheses, like this: @example emacsserver (GNU Emacs) 19.30 @end example @noindent If the package has a version number which is different from this program's version number, you can mention the package version number just before the close-parenthesis. If you @emph{need} to mention the version numbers of libraries which are distributed separately from the package which contains this program, you can do so by printing an additional line of version info for each library you want to mention. Use the same format for these lines as for the first line. Please do not mention all of the libraries that the program uses ``just for completeness''---that would produce a lot of unhelpful clutter. Please mention library version numbers only if you find in practice that they are very important to you in debugging. The following line, after the version number line or lines, should be a copyright notice. If more than one copyright notice is called for, put each on a separate line. Next should follow a line stating the license, preferably using one of abbrevations below, and a brief statement that the program is free software, and that users are free to copy and change it. Also mention that there is no warranty, to the extent permitted by law. See recommended wording below. It is ok to finish the output with a list of the major authors of the program, as a way of giving credit. Here's an example of output that follows these rules: @smallexample GNU hello 2.3 Copyright (C) 2007 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. @end smallexample You should adapt this to your program, of course, filling in the proper year, copyright holder, name of program, and the references to distribution terms, and changing the rest of the wording as necessary. This copyright notice only needs to mention the most recent year in which changes were made---there's no need to list the years for previous versions' changes. You don't have to mention the name of the program in these notices, if that is inconvenient, since it appeared in the first line. (The rules are different for copyright notices in source files; @pxref{Copyright Notices,,,maintain,Information for GNU Maintainers}.) Translations of the above lines must preserve the validity of the copyright notices (@pxref{Internationalization}). If the translation's character set supports it, the @samp{(C)} should be replaced with the copyright symbol, as follows: @ifinfo (the official copyright symbol, which is the letter C in a circle); @end ifinfo @ifnotinfo @copyright{} @end ifnotinfo Write the word ``Copyright'' exactly like that, in English. Do not translate it into another language. International treaties recognize the English word ``Copyright''; translations into other languages do not have legal significance. Finally, here is the table of our suggested license abbreviations. Any abbreviation can be followed by @samp{v@var{version}[+]}, meaning that particular version, or later versions with the @samp{+}, as shown above. In the case of exceptions for extra permissions with the GPL, we use @samp{/} for a separator; the version number can follow the license abbreviation as usual, as in the examples below. @table @asis @item GPL GNU General Public License, @url{http://www.gnu.org/@/licenses/@/gpl.html}. @item LGPL GNU Lesser General Public License, @url{http://www.gnu.org/@/licenses/@/lgpl.html}. @item GPL/Ada GNU GPL with the exception for Ada. @item Apache The Apache Software Foundation license, @url{http://www.apache.org/@/licenses}. @item Artistic The Artistic license used for Perl, @url{http://www.perlfoundation.org/@/legal}. @item Expat The Expat license, @url{http://www.jclark.com/@/xml/@/copying.txt}. @item MPL The Mozilla Public License, @url{http://www.mozilla.org/@/MPL/}. @item OBSD The original (4-clause) BSD license, incompatible with the GNU GPL @url{http://www.xfree86.org/@/3.3.6/@/COPYRIGHT2.html#6}. @item PHP The license used for PHP, @url{http://www.php.net/@/license/}. @item public domain The non-license that is being in the public domain, @url{http://www.gnu.org/@/licenses/@/license-list.html#PublicDomain}. @item Python The license for Python, @url{http://www.python.org/@/2.0.1/@/license.html}. @item RBSD The revised (3-clause) BSD, compatible with the GNU GPL,@* @url{http://www.xfree86.org/@/3.3.6/@/COPYRIGHT2.html#5}. @item X11 The simple non-copyleft license used for most versions of the X Window System, @url{http://www.xfree86.org/@/3.3.6/@/COPYRIGHT2.html#3}. @item Zlib The license for Zlib, @url{http://www.gzip.org/@/zlib/@/zlib_license.html}. @end table More information about these licenses and many more are on the GNU licensing web pages, @url{http://www.gnu.org/@/licenses/@/license-list.html}. @node --help @subsection @option{--help} @cindex @samp{--help} output The standard @code{--help} option should output brief documentation for how to invoke the program, on standard output, then exit successfully. Other options and arguments should be ignored once this is seen, and the program should not perform its normal function. @cindex address for bug reports @cindex bug reports Near the end of the @samp{--help} option's output, please place lines giving the email address for bug reports, the package's home page (normally @indicateurl{http://www.gnu.org/software/@var{pkg}}, and the general page for help using GNU programs. The format should be like this: @example Report bugs to: @var{mailing-address} @var{pkg} home page: General help using GNU software: @end example It is ok to mention other appropriate mailing lists and web pages. @node Option Table @section Table of Long Options @cindex long option names @cindex table of long options Here is a table of long options used by GNU programs. It is surely incomplete, but we aim to list all the options that a new program might want to be compatible with. If you use names not already in the table, please send @email{bug-standards@@gnu.org} a list of them, with their meanings, so we can update the table. @c Please leave newlines between items in this table; it's much easier @c to update when it isn't completely squashed together and unreadable. @c When there is more than one short option for a long option name, put @c a semicolon between the lists of the programs that use them, not a @c period. --friedman @table @samp @item after-date @samp{-N} in @code{tar}. @item all @samp{-a} in @code{du}, @code{ls}, @code{nm}, @code{stty}, @code{uname}, and @code{unexpand}. @item all-text @samp{-a} in @code{diff}. @item almost-all @samp{-A} in @code{ls}. @item append @samp{-a} in @code{etags}, @code{tee}, @code{time}; @samp{-r} in @code{tar}. @item archive @samp{-a} in @code{cp}. @item archive-name @samp{-n} in @code{shar}. @item arglength @samp{-l} in @code{m4}. @item ascii @samp{-a} in @code{diff}. @item assign @samp{-v} in @code{gawk}. @item assume-new @samp{-W} in @code{make}. @item assume-old @samp{-o} in @code{make}. @item auto-check @samp{-a} in @code{recode}. @item auto-pager @samp{-a} in @code{wdiff}. @item auto-reference @samp{-A} in @code{ptx}. @item avoid-wraps @samp{-n} in @code{wdiff}. @item background For server programs, run in the background. @item backward-search @samp{-B} in @code{ctags}. @item basename @samp{-f} in @code{shar}. @item batch Used in GDB. @item baud Used in GDB. @item before @samp{-b} in @code{tac}. @item binary @samp{-b} in @code{cpio} and @code{diff}. @item bits-per-code @samp{-b} in @code{shar}. @item block-size Used in @code{cpio} and @code{tar}. @item blocks @samp{-b} in @code{head} and @code{tail}. @item break-file @samp{-b} in @code{ptx}. @item brief Used in various programs to make output shorter. @item bytes @samp{-c} in @code{head}, @code{split}, and @code{tail}. @item c@t{++} @samp{-C} in @code{etags}. @item catenate @samp{-A} in @code{tar}. @item cd Used in various programs to specify the directory to use. @item changes @samp{-c} in @code{chgrp} and @code{chown}. @item classify @samp{-F} in @code{ls}. @item colons @samp{-c} in @code{recode}. @item command @samp{-c} in @code{su}; @samp{-x} in GDB. @item compare @samp{-d} in @code{tar}. @item compat Used in @code{gawk}. @item compress @samp{-Z} in @code{tar} and @code{shar}. @item concatenate @samp{-A} in @code{tar}. @item confirmation @samp{-w} in @code{tar}. @item context Used in @code{diff}. @item copyleft @samp{-W copyleft} in @code{gawk}. @item copyright @samp{-C} in @code{ptx}, @code{recode}, and @code{wdiff}; @samp{-W copyright} in @code{gawk}. @item core Used in GDB. @item count @samp{-q} in @code{who}. @item count-links @samp{-l} in @code{du}. @item create Used in @code{tar} and @code{cpio}. @item cut-mark @samp{-c} in @code{shar}. @item cxref @samp{-x} in @code{ctags}. @item date @samp{-d} in @code{touch}. @item debug @samp{-d} in @code{make} and @code{m4}; @samp{-t} in Bison. @item define @samp{-D} in @code{m4}. @item defines @samp{-d} in Bison and @code{ctags}. @item delete @samp{-D} in @code{tar}. @item dereference @samp{-L} in @code{chgrp}, @code{chown}, @code{cpio}, @code{du}, @code{ls}, and @code{tar}. @item dereference-args @samp{-D} in @code{du}. @item device Specify an I/O device (special file name). @item diacritics @samp{-d} in @code{recode}. @item dictionary-order @samp{-d} in @code{look}. @item diff @samp{-d} in @code{tar}. @item digits @samp{-n} in @code{csplit}. @item directory Specify the directory to use, in various programs. In @code{ls}, it means to show directories themselves rather than their contents. In @code{rm} and @code{ln}, it means to not treat links to directories specially. @item discard-all @samp{-x} in @code{strip}. @item discard-locals @samp{-X} in @code{strip}. @item dry-run @samp{-n} in @code{make}. @item ed @samp{-e} in @code{diff}. @item elide-empty-files @samp{-z} in @code{csplit}. @item end-delete @samp{-x} in @code{wdiff}. @item end-insert @samp{-z} in @code{wdiff}. @item entire-new-file @samp{-N} in @code{diff}. @item environment-overrides @samp{-e} in @code{make}. @item eof @samp{-e} in @code{xargs}. @item epoch Used in GDB. @item error-limit Used in @code{makeinfo}. @item error-output @samp{-o} in @code{m4}. @item escape @samp{-b} in @code{ls}. @item exclude-from @samp{-X} in @code{tar}. @item exec Used in GDB. @item exit @samp{-x} in @code{xargs}. @item exit-0 @samp{-e} in @code{unshar}. @item expand-tabs @samp{-t} in @code{diff}. @item expression @samp{-e} in @code{sed}. @item extern-only @samp{-g} in @code{nm}. @item extract @samp{-i} in @code{cpio}; @samp{-x} in @code{tar}. @item faces @samp{-f} in @code{finger}. @item fast @samp{-f} in @code{su}. @item fatal-warnings @samp{-E} in @code{m4}. @item file @samp{-f} in @code{gawk}, @code{info}, @code{make}, @code{mt}, @code{sed}, and @code{tar}. @item field-separator @samp{-F} in @code{gawk}. @item file-prefix @samp{-b} in Bison. @item file-type @samp{-F} in @code{ls}. @item files-from @samp{-T} in @code{tar}. @item fill-column Used in @code{makeinfo}. @item flag-truncation @samp{-F} in @code{ptx}. @item fixed-output-files @samp{-y} in Bison. @item follow @samp{-f} in @code{tail}. @item footnote-style Used in @code{makeinfo}. @item force @samp{-f} in @code{cp}, @code{ln}, @code{mv}, and @code{rm}. @item force-prefix @samp{-F} in @code{shar}. @item foreground For server programs, run in the foreground; in other words, don't do anything special to run the server in the background. @item format Used in @code{ls}, @code{time}, and @code{ptx}. @item freeze-state @samp{-F} in @code{m4}. @item fullname Used in GDB. @item gap-size @samp{-g} in @code{ptx}. @item get @samp{-x} in @code{tar}. @item graphic @samp{-i} in @code{ul}. @item graphics @samp{-g} in @code{recode}. @item group @samp{-g} in @code{install}. @item gzip @samp{-z} in @code{tar} and @code{shar}. @item hashsize @samp{-H} in @code{m4}. @item header @samp{-h} in @code{objdump} and @code{recode} @item heading @samp{-H} in @code{who}. @item help Used to ask for brief usage information. @item here-delimiter @samp{-d} in @code{shar}. @item hide-control-chars @samp{-q} in @code{ls}. @item html In @code{makeinfo}, output HTML. @item idle @samp{-u} in @code{who}. @item ifdef @samp{-D} in @code{diff}. @item ignore @samp{-I} in @code{ls}; @samp{-x} in @code{recode}. @item ignore-all-space @samp{-w} in @code{diff}. @item ignore-backups @samp{-B} in @code{ls}. @item ignore-blank-lines @samp{-B} in @code{diff}. @item ignore-case @samp{-f} in @code{look} and @code{ptx}; @samp{-i} in @code{diff} and @code{wdiff}. @item ignore-errors @samp{-i} in @code{make}. @item ignore-file @samp{-i} in @code{ptx}. @item ignore-indentation @samp{-I} in @code{etags}. @item ignore-init-file @samp{-f} in Oleo. @item ignore-interrupts @samp{-i} in @code{tee}. @item ignore-matching-lines @samp{-I} in @code{diff}. @item ignore-space-change @samp{-b} in @code{diff}. @item ignore-zeros @samp{-i} in @code{tar}. @item include @samp{-i} in @code{etags}; @samp{-I} in @code{m4}. @item include-dir @samp{-I} in @code{make}. @item incremental @samp{-G} in @code{tar}. @item info @samp{-i}, @samp{-l}, and @samp{-m} in Finger. @item init-file In some programs, specify the name of the file to read as the user's init file. @item initial @samp{-i} in @code{expand}. @item initial-tab @samp{-T} in @code{diff}. @item inode @samp{-i} in @code{ls}. @item interactive @samp{-i} in @code{cp}, @code{ln}, @code{mv}, @code{rm}; @samp{-e} in @code{m4}; @samp{-p} in @code{xargs}; @samp{-w} in @code{tar}. @item intermix-type @samp{-p} in @code{shar}. @item iso-8601 Used in @code{date} @item jobs @samp{-j} in @code{make}. @item just-print @samp{-n} in @code{make}. @item keep-going @samp{-k} in @code{make}. @item keep-files @samp{-k} in @code{csplit}. @item kilobytes @samp{-k} in @code{du} and @code{ls}. @item language @samp{-l} in @code{etags}. @item less-mode @samp{-l} in @code{wdiff}. @item level-for-gzip @samp{-g} in @code{shar}. @item line-bytes @samp{-C} in @code{split}. @item lines Used in @code{split}, @code{head}, and @code{tail}. @item link @samp{-l} in @code{cpio}. @item lint @itemx lint-old Used in @code{gawk}. @item list @samp{-t} in @code{cpio}; @samp{-l} in @code{recode}. @item list @samp{-t} in @code{tar}. @item literal @samp{-N} in @code{ls}. @item load-average @samp{-l} in @code{make}. @item login Used in @code{su}. @item machine Used in @code{uname}. @item macro-name @samp{-M} in @code{ptx}. @item mail @samp{-m} in @code{hello} and @code{uname}. @item make-directories @samp{-d} in @code{cpio}. @item makefile @samp{-f} in @code{make}. @item mapped Used in GDB. @item max-args @samp{-n} in @code{xargs}. @item max-chars @samp{-n} in @code{xargs}. @item max-lines @samp{-l} in @code{xargs}. @item max-load @samp{-l} in @code{make}. @item max-procs @samp{-P} in @code{xargs}. @item mesg @samp{-T} in @code{who}. @item message @samp{-T} in @code{who}. @item minimal @samp{-d} in @code{diff}. @item mixed-uuencode @samp{-M} in @code{shar}. @item mode @samp{-m} in @code{install}, @code{mkdir}, and @code{mkfifo}. @item modification-time @samp{-m} in @code{tar}. @item multi-volume @samp{-M} in @code{tar}. @item name-prefix @samp{-a} in Bison. @item nesting-limit @samp{-L} in @code{m4}. @item net-headers @samp{-a} in @code{shar}. @item new-file @samp{-W} in @code{make}. @item no-builtin-rules @samp{-r} in @code{make}. @item no-character-count @samp{-w} in @code{shar}. @item no-check-existing @samp{-x} in @code{shar}. @item no-common @samp{-3} in @code{wdiff}. @item no-create @samp{-c} in @code{touch}. @item no-defines @samp{-D} in @code{etags}. @item no-deleted @samp{-1} in @code{wdiff}. @item no-dereference @samp{-d} in @code{cp}. @item no-inserted @samp{-2} in @code{wdiff}. @item no-keep-going @samp{-S} in @code{make}. @item no-lines @samp{-l} in Bison. @item no-piping @samp{-P} in @code{shar}. @item no-prof @samp{-e} in @code{gprof}. @item no-regex @samp{-R} in @code{etags}. @item no-sort @samp{-p} in @code{nm}. @item no-splash Don't print a startup splash screen. @item no-split Used in @code{makeinfo}. @item no-static @samp{-a} in @code{gprof}. @item no-time @samp{-E} in @code{gprof}. @item no-timestamp @samp{-m} in @code{shar}. @item no-validate Used in @code{makeinfo}. @item no-wait Used in @code{emacsclient}. @item no-warn Used in various programs to inhibit warnings. @item node @samp{-n} in @code{info}. @item nodename @samp{-n} in @code{uname}. @item nonmatching @samp{-f} in @code{cpio}. @item nstuff @samp{-n} in @code{objdump}. @item null @samp{-0} in @code{xargs}. @item number @samp{-n} in @code{cat}. @item number-nonblank @samp{-b} in @code{cat}. @item numeric-sort @samp{-n} in @code{nm}. @item numeric-uid-gid @samp{-n} in @code{cpio} and @code{ls}. @item nx Used in GDB. @item old-archive @samp{-o} in @code{tar}. @item old-file @samp{-o} in @code{make}. @item one-file-system @samp{-l} in @code{tar}, @code{cp}, and @code{du}. @item only-file @samp{-o} in @code{ptx}. @item only-prof @samp{-f} in @code{gprof}. @item only-time @samp{-F} in @code{gprof}. @item options @samp{-o} in @code{getopt}, @code{fdlist}, @code{fdmount}, @code{fdmountd}, and @code{fdumount}. @item output In various programs, specify the output file name. @item output-prefix @samp{-o} in @code{shar}. @item override @samp{-o} in @code{rm}. @item overwrite @samp{-c} in @code{unshar}. @item owner @samp{-o} in @code{install}. @item paginate @samp{-l} in @code{diff}. @item paragraph-indent Used in @code{makeinfo}. @item parents @samp{-p} in @code{mkdir} and @code{rmdir}. @item pass-all @samp{-p} in @code{ul}. @item pass-through @samp{-p} in @code{cpio}. @item port @samp{-P} in @code{finger}. @item portability @samp{-c} in @code{cpio} and @code{tar}. @item posix Used in @code{gawk}. @item prefix-builtins @samp{-P} in @code{m4}. @item prefix @samp{-f} in @code{csplit}. @item preserve Used in @code{tar} and @code{cp}. @item preserve-environment @samp{-p} in @code{su}. @item preserve-modification-time @samp{-m} in @code{cpio}. @item preserve-order @samp{-s} in @code{tar}. @item preserve-permissions @samp{-p} in @code{tar}. @item print @samp{-l} in @code{diff}. @item print-chars @samp{-L} in @code{cmp}. @item print-data-base @samp{-p} in @code{make}. @item print-directory @samp{-w} in @code{make}. @item print-file-name @samp{-o} in @code{nm}. @item print-symdefs @samp{-s} in @code{nm}. @item printer @samp{-p} in @code{wdiff}. @item prompt @samp{-p} in @code{ed}. @item proxy Specify an HTTP proxy. @item query-user @samp{-X} in @code{shar}. @item question @samp{-q} in @code{make}. @item quiet Used in many programs to inhibit the usual output. Every program accepting @samp{--quiet} should accept @samp{--silent} as a synonym. @item quiet-unshar @samp{-Q} in @code{shar} @item quote-name @samp{-Q} in @code{ls}. @item rcs @samp{-n} in @code{diff}. @item re-interval Used in @code{gawk}. @item read-full-blocks @samp{-B} in @code{tar}. @item readnow Used in GDB. @item recon @samp{-n} in @code{make}. @item record-number @samp{-R} in @code{tar}. @item recursive Used in @code{chgrp}, @code{chown}, @code{cp}, @code{ls}, @code{diff}, and @code{rm}. @item reference @samp{-r} in @code{touch}. @item references @samp{-r} in @code{ptx}. @item regex @samp{-r} in @code{tac} and @code{etags}. @item release @samp{-r} in @code{uname}. @item reload-state @samp{-R} in @code{m4}. @item relocation @samp{-r} in @code{objdump}. @item rename @samp{-r} in @code{cpio}. @item replace @samp{-i} in @code{xargs}. @item report-identical-files @samp{-s} in @code{diff}. @item reset-access-time @samp{-a} in @code{cpio}. @item reverse @samp{-r} in @code{ls} and @code{nm}. @item reversed-ed @samp{-f} in @code{diff}. @item right-side-defs @samp{-R} in @code{ptx}. @item same-order @samp{-s} in @code{tar}. @item same-permissions @samp{-p} in @code{tar}. @item save @samp{-g} in @code{stty}. @item se Used in GDB. @item sentence-regexp @samp{-S} in @code{ptx}. @item separate-dirs @samp{-S} in @code{du}. @item separator @samp{-s} in @code{tac}. @item sequence Used by @code{recode} to chose files or pipes for sequencing passes. @item shell @samp{-s} in @code{su}. @item show-all @samp{-A} in @code{cat}. @item show-c-function @samp{-p} in @code{diff}. @item show-ends @samp{-E} in @code{cat}. @item show-function-line @samp{-F} in @code{diff}. @item show-tabs @samp{-T} in @code{cat}. @item silent Used in many programs to inhibit the usual output. Every program accepting @samp{--silent} should accept @samp{--quiet} as a synonym. @item size @samp{-s} in @code{ls}. @item socket Specify a file descriptor for a network server to use for its socket, instead of opening and binding a new socket. This provides a way to run, in a non-privileged process, a server that normally needs a reserved port number. @item sort Used in @code{ls}. @item source @samp{-W source} in @code{gawk}. @item sparse @samp{-S} in @code{tar}. @item speed-large-files @samp{-H} in @code{diff}. @item split-at @samp{-E} in @code{unshar}. @item split-size-limit @samp{-L} in @code{shar}. @item squeeze-blank @samp{-s} in @code{cat}. @item start-delete @samp{-w} in @code{wdiff}. @item start-insert @samp{-y} in @code{wdiff}. @item starting-file Used in @code{tar} and @code{diff} to specify which file within a directory to start processing with. @item statistics @samp{-s} in @code{wdiff}. @item stdin-file-list @samp{-S} in @code{shar}. @item stop @samp{-S} in @code{make}. @item strict @samp{-s} in @code{recode}. @item strip @samp{-s} in @code{install}. @item strip-all @samp{-s} in @code{strip}. @item strip-debug @samp{-S} in @code{strip}. @item submitter @samp{-s} in @code{shar}. @item suffix @samp{-S} in @code{cp}, @code{ln}, @code{mv}. @item suffix-format @samp{-b} in @code{csplit}. @item sum @samp{-s} in @code{gprof}. @item summarize @samp{-s} in @code{du}. @item symbolic @samp{-s} in @code{ln}. @item symbols Used in GDB and @code{objdump}. @item synclines @samp{-s} in @code{m4}. @item sysname @samp{-s} in @code{uname}. @item tabs @samp{-t} in @code{expand} and @code{unexpand}. @item tabsize @samp{-T} in @code{ls}. @item terminal @samp{-T} in @code{tput} and @code{ul}. @samp{-t} in @code{wdiff}. @item text @samp{-a} in @code{diff}. @item text-files @samp{-T} in @code{shar}. @item time Used in @code{ls} and @code{touch}. @item timeout Specify how long to wait before giving up on some operation. @item to-stdout @samp{-O} in @code{tar}. @item total @samp{-c} in @code{du}. @item touch @samp{-t} in @code{make}, @code{ranlib}, and @code{recode}. @item trace @samp{-t} in @code{m4}. @item traditional @samp{-t} in @code{hello}; @samp{-W traditional} in @code{gawk}; @samp{-G} in @code{ed}, @code{m4}, and @code{ptx}. @item tty Used in GDB. @item typedefs @samp{-t} in @code{ctags}. @item typedefs-and-c++ @samp{-T} in @code{ctags}. @item typeset-mode @samp{-t} in @code{ptx}. @item uncompress @samp{-z} in @code{tar}. @item unconditional @samp{-u} in @code{cpio}. @item undefine @samp{-U} in @code{m4}. @item undefined-only @samp{-u} in @code{nm}. @item update @samp{-u} in @code{cp}, @code{ctags}, @code{mv}, @code{tar}. @item usage Used in @code{gawk}; same as @samp{--help}. @item uuencode @samp{-B} in @code{shar}. @item vanilla-operation @samp{-V} in @code{shar}. @item verbose Print more information about progress. Many programs support this. @item verify @samp{-W} in @code{tar}. @item version Print the version number. @item version-control @samp{-V} in @code{cp}, @code{ln}, @code{mv}. @item vgrind @samp{-v} in @code{ctags}. @item volume @samp{-V} in @code{tar}. @item what-if @samp{-W} in @code{make}. @item whole-size-limit @samp{-l} in @code{shar}. @item width @samp{-w} in @code{ls} and @code{ptx}. @item word-regexp @samp{-W} in @code{ptx}. @item writable @samp{-T} in @code{who}. @item zeros @samp{-z} in @code{gprof}. @end table @node OID Allocations @section OID Allocations @cindex OID allocations for GNU @cindex SNMP @cindex LDAP @cindex X.509 The OID (object identifier) 1.3.6.1.4.1.11591 has been assigned to the GNU Project (thanks to Werner Koch). These are used for SNMP, LDAP, X.509 certificates, and so on. The web site @url{http://www.alvestrand.no/objectid} has a (voluntary) listing of many OID assignments. If you need a new slot for your GNU package, write @email{maintainers@@gnu.org}. Here is a list of arcs currently assigned: @example @include gnu-oids.texi @end example @node Memory Usage @section Memory Usage @cindex memory usage If a program typically uses just a few meg of memory, don't bother making any effort to reduce memory usage. For example, if it is impractical for other reasons to operate on files more than a few meg long, it is reasonable to read entire input files into memory to operate on them. However, for programs such as @code{cat} or @code{tail}, that can usefully operate on very large files, it is important to avoid using a technique that would artificially limit the size of files it can handle. If a program works by lines and could be applied to arbitrary user-supplied input files, it should keep only a line in memory, because this is not very hard and users will want to be able to operate on input files that are bigger than will fit in memory all at once. If your program creates complicated data structures, just make them in memory and give a fatal error if @code{malloc} returns zero. @node File Usage @section File Usage @cindex file usage Programs should be prepared to operate when @file{/usr} and @file{/etc} are read-only file systems. Thus, if the program manages log files, lock files, backup files, score files, or any other files which are modified for internal purposes, these files should not be stored in @file{/usr} or @file{/etc}. There are two exceptions. @file{/etc} is used to store system configuration information; it is reasonable for a program to modify files in @file{/etc} when its job is to update the system configuration. Also, if the user explicitly asks to modify one file in a directory, it is reasonable for the program to store other files in the same directory. @node Writing C @chapter Making The Best Use of C This chapter provides advice on how best to use the C language when writing GNU software. @menu * Formatting:: Formatting your source code. * Comments:: Commenting your work. * Syntactic Conventions:: Clean use of C constructs. * Names:: Naming variables, functions, and files. * System Portability:: Portability among different operating systems. * CPU Portability:: Supporting the range of CPU types. * System Functions:: Portability and ``standard'' library functions. * Internationalization:: Techniques for internationalization. * Character Set:: Use ASCII by default. * Quote Characters:: Use `...' in the C locale. * Mmap:: How you can safely use @code{mmap}. @end menu @node Formatting @section Formatting Your Source Code @cindex formatting source code @cindex open brace @cindex braces, in C source It is important to put the open-brace that starts the body of a C function in column one, so that they will start a defun. Several tools look for open-braces in column one to find the beginnings of C functions. These tools will not work on code not formatted that way. Avoid putting open-brace, open-parenthesis or open-bracket in column one when they are inside a function, so that they won't start a defun. The open-brace that starts a @code{struct} body can go in column one if you find it useful to treat that definition as a defun. It is also important for function definitions to start the name of the function in column one. This helps people to search for function definitions, and may also help certain tools recognize them. Thus, using Standard C syntax, the format is this: @example static char * concat (char *s1, char *s2) @{ @dots{} @} @end example @noindent or, if you want to use traditional C syntax, format the definition like this: @example static char * concat (s1, s2) /* Name starts in column one here */ char *s1, *s2; @{ /* Open brace in column one here */ @dots{} @} @end example In Standard C, if the arguments don't fit nicely on one line, split it like this: @example int lots_of_args (int an_integer, long a_long, short a_short, double a_double, float a_float) @dots{} @end example The rest of this section gives our recommendations for other aspects of C formatting style, which is also the default style of the @code{indent} program in version 1.2 and newer. It corresponds to the options @smallexample -nbad -bap -nbc -bbo -bl -bli2 -bls -ncdb -nce -cp1 -cs -di2 -ndj -nfc1 -nfca -hnl -i2 -ip5 -lp -pcs -psl -nsc -nsob @end smallexample We don't think of these recommendations as requirements, because it causes no problems for users if two different programs have different formatting styles. But whatever style you use, please use it consistently, since a mixture of styles within one program tends to look ugly. If you are contributing changes to an existing program, please follow the style of that program. For the body of the function, our recommended style looks like this: @example if (x < foo (y, z)) haha = bar[4] + 5; else @{ while (z) @{ haha += foo (z, z); z--; @} return ++x + bar (); @} @end example @cindex spaces before open-paren We find it easier to read a program when it has spaces before the open-parentheses and after the commas. Especially after the commas. When you split an expression into multiple lines, split it before an operator, not after one. Here is the right way: @cindex expressions, splitting @example if (foo_this_is_long && bar > win (x, y, z) && remaining_condition) @end example Try to avoid having two operators of different precedence at the same level of indentation. For example, don't write this: @example mode = (inmode[j] == VOIDmode || GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j]) ? outmode[j] : inmode[j]); @end example Instead, use extra parentheses so that the indentation shows the nesting: @example mode = ((inmode[j] == VOIDmode || (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j]))) ? outmode[j] : inmode[j]); @end example Insert extra parentheses so that Emacs will indent the code properly. For example, the following indentation looks nice if you do it by hand, @example v = rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000 + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000; @end example @noindent but Emacs would alter it. Adding a set of parentheses produces something that looks equally nice, and which Emacs will preserve: @example v = (rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000 + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000); @end example Format do-while statements like this: @example do @{ a = foo (a); @} while (a > 0); @end example @cindex formfeed @cindex control-L Please use formfeed characters (control-L) to divide the program into pages at logical places (but not within a function). It does not matter just how long the pages are, since they do not have to fit on a printed page. The formfeeds should appear alone on lines by themselves. @node Comments @section Commenting Your Work @cindex commenting Every program should start with a comment saying briefly what it is for. Example: @samp{fmt - filter for simple filling of text}. This comment should be at the top of the source file containing the @samp{main} function of the program. Also, please write a brief comment at the start of each source file, with the file name and a line or two about the overall purpose of the file. Please write the comments in a GNU program in English, because English is the one language that nearly all programmers in all countries can read. If you do not write English well, please write comments in English as well as you can, then ask other people to help rewrite them. If you can't write comments in English, please find someone to work with you and translate your comments into English. Please put a comment on each function saying what the function does, what sorts of arguments it gets, and what the possible values of arguments mean and are used for. It is not necessary to duplicate in words the meaning of the C argument declarations, if a C type is being used in its customary fashion. If there is anything nonstandard about its use (such as an argument of type @code{char *} which is really the address of the second character of a string, not the first), or any possible values that would not work the way one would expect (such as, that strings containing newlines are not guaranteed to work), be sure to say so. Also explain the significance of the return value, if there is one. Please put two spaces after the end of a sentence in your comments, so that the Emacs sentence commands will work. Also, please write complete sentences and capitalize the first word. If a lower-case identifier comes at the beginning of a sentence, don't capitalize it! Changing the spelling makes it a different identifier. If you don't like starting a sentence with a lower case letter, write the sentence differently (e.g., ``The identifier lower-case is @dots{}''). The comment on a function is much clearer if you use the argument names to speak about the argument values. The variable name itself should be lower case, but write it in upper case when you are speaking about the value rather than the variable itself. Thus, ``the inode number NODE_NUM'' rather than ``an inode''. There is usually no purpose in restating the name of the function in the comment before it, because the reader can see that for himself. There might be an exception when the comment is so long that the function itself would be off the bottom of the screen. There should be a comment on each static variable as well, like this: @example /* Nonzero means truncate lines in the display; zero means continue them. */ int truncate_lines; @end example @cindex conditionals, comments for @cindex @code{#endif}, commenting Every @samp{#endif} should have a comment, except in the case of short conditionals (just a few lines) that are not nested. The comment should state the condition of the conditional that is ending, @emph{including its sense}. @samp{#else} should have a comment describing the condition @emph{and sense} of the code that follows. For example: @example @group #ifdef foo @dots{} #else /* not foo */ @dots{} #endif /* not foo */ @end group @group #ifdef foo @dots{} #endif /* foo */ @end group @end example @noindent but, by contrast, write the comments this way for a @samp{#ifndef}: @example @group #ifndef foo @dots{} #else /* foo */ @dots{} #endif /* foo */ @end group @group #ifndef foo @dots{} #endif /* not foo */ @end group @end example @node Syntactic Conventions @section Clean Use of C Constructs @cindex syntactic conventions @cindex implicit @code{int} @cindex function argument, declaring Please explicitly declare the types of all objects. For example, you should explicitly declare all arguments to functions, and you should declare functions to return @code{int} rather than omitting the @code{int}. @cindex compiler warnings @cindex @samp{-Wall} compiler option Some programmers like to use the GCC @samp{-Wall} option, and change the code whenever it issues a warning. If you want to do this, then do. Other programmers prefer not to use @samp{-Wall}, because it gives warnings for valid and legitimate code which they do not want to change. If you want to do this, then do. The compiler should be your servant, not your master. Declarations of external functions and functions to appear later in the source file should all go in one place near the beginning of the file (somewhere before the first function definition in the file), or else should go in a header file. Don't put @code{extern} declarations inside functions. @cindex temporary variables It used to be common practice to use the same local variables (with names like @code{tem}) over and over for different values within one function. Instead of doing this, it is better to declare a separate local variable for each distinct purpose, and give it a name which is meaningful. This not only makes programs easier to understand, it also facilitates optimization by good compilers. You can also move the declaration of each local variable into the smallest scope that includes all its uses. This makes the program even cleaner. Don't use local variables or parameters that shadow global identifiers. @cindex multiple variables in a line Don't declare multiple variables in one declaration that spans lines. Start a new declaration on each line, instead. For example, instead of this: @example @group int foo, bar; @end group @end example @noindent write either this: @example int foo, bar; @end example @noindent or this: @example int foo; int bar; @end example @noindent (If they are global variables, each should have a comment preceding it anyway.) When you have an @code{if}-@code{else} statement nested in another @code{if} statement, always put braces around the @code{if}-@code{else}. Thus, never write like this: @example if (foo) if (bar) win (); else lose (); @end example @noindent always like this: @example if (foo) @{ if (bar) win (); else lose (); @} @end example If you have an @code{if} statement nested inside of an @code{else} statement, either write @code{else if} on one line, like this, @example if (foo) @dots{} else if (bar) @dots{} @end example @noindent with its @code{then}-part indented like the preceding @code{then}-part, or write the nested @code{if} within braces like this: @example if (foo) @dots{} else @{ if (bar) @dots{} @} @end example Don't declare both a structure tag and variables or typedefs in the same declaration. Instead, declare the structure tag separately and then use it to declare the variables or typedefs. Try to avoid assignments inside @code{if}-conditions (assignments inside @code{while}-conditions are ok). For example, don't write this: @example if ((foo = (char *) malloc (sizeof *foo)) == 0) fatal ("virtual memory exhausted"); @end example @noindent instead, write this: @example foo = (char *) malloc (sizeof *foo); if (foo == 0) fatal ("virtual memory exhausted"); @end example @pindex lint Don't make the program ugly to placate @code{lint}. Please don't insert any casts to @code{void}. Zero without a cast is perfectly fine as a null pointer constant, except when calling a varargs function. @node Names @section Naming Variables, Functions, and Files @cindex names of variables, functions, and files The names of global variables and functions in a program serve as comments of a sort. So don't choose terse names---instead, look for names that give useful information about the meaning of the variable or function. In a GNU program, names should be English, like other comments. Local variable names can be shorter, because they are used only within one context, where (presumably) comments explain their purpose. Try to limit your use of abbreviations in symbol names. It is ok to make a few abbreviations, explain what they mean, and then use them frequently, but don't use lots of obscure abbreviations. Please use underscores to separate words in a name, so that the Emacs word commands can be useful within them. Stick to lower case; reserve upper case for macros and @code{enum} constants, and for name-prefixes that follow a uniform convention. For example, you should use names like @code{ignore_space_change_flag}; don't use names like @code{iCantReadThis}. Variables that indicate whether command-line options have been specified should be named after the meaning of the option, not after the option-letter. A comment should state both the exact meaning of the option and its letter. For example, @example @group /* Ignore changes in horizontal whitespace (-b). */ int ignore_space_change_flag; @end group @end example When you want to define names with constant integer values, use @code{enum} rather than @samp{#define}. GDB knows about enumeration constants. @cindex file-name limitations @pindex doschk You might want to make sure that none of the file names would conflict if the files were loaded onto an MS-DOS file system which shortens the names. You can use the program @code{doschk} to test for this. Some GNU programs were designed to limit themselves to file names of 14 characters or less, to avoid file name conflicts if they are read into older System V systems. Please preserve this feature in the existing GNU programs that have it, but there is no need to do this in new GNU programs. @code{doschk} also reports file names longer than 14 characters. @node System Portability @section Portability between System Types @cindex portability, between system types In the Unix world, ``portability'' refers to porting to different Unix versions. For a GNU program, this kind of portability is desirable, but not paramount. The primary purpose of GNU software is to run on top of the GNU kernel, compiled with the GNU C compiler, on various types of @sc{cpu}. So the kinds of portability that are absolutely necessary are quite limited. But it is important to support Linux-based GNU systems, since they are the form of GNU that is popular. Beyond that, it is good to support the other free operating systems (*BSD), and it is nice to support other Unix-like systems if you want to. Supporting a variety of Unix-like systems is desirable, although not paramount. It is usually not too hard, so you may as well do it. But you don't have to consider it an obligation, if it does turn out to be hard. @pindex autoconf The easiest way to achieve portability to most Unix-like systems is to use Autoconf. It's unlikely that your program needs to know more information about the host platform than Autoconf can provide, simply because most of the programs that need such knowledge have already been written. Avoid using the format of semi-internal data bases (e.g., directories) when there is a higher-level alternative (@code{readdir}). @cindex non-@sc{posix} systems, and portability As for systems that are not like Unix, such as MSDOS, Windows, VMS, MVS, and older Macintosh systems, supporting them is often a lot of work. When that is the case, it is better to spend your time adding features that will be useful on GNU and GNU/Linux, rather than on supporting other incompatible systems. If you do support Windows, please do not abbreviate it as ``win''. In hacker terminology, calling something a ``win'' is a form of praise. You're free to praise Microsoft Windows on your own if you want, but please don't do this in GNU packages. Instead of abbreviating ``Windows'' to ``win'', you can write it in full or abbreviate it to ``woe'' or ``w''. In GNU Emacs, for instance, we use @samp{w32} in file names of Windows-specific files, but the macro for Windows conditionals is called @code{WINDOWSNT}. It is a good idea to define the ``feature test macro'' @code{_GNU_SOURCE} when compiling your C files. When you compile on GNU or GNU/Linux, this will enable the declarations of GNU library extension functions, and that will usually give you a compiler error message if you define the same function names in some other way in your program. (You don't have to actually @emph{use} these functions, if you prefer to make the program more portable to other systems.) But whether or not you use these GNU extensions, you should avoid using their names for any other meanings. Doing so would make it hard to move your code into other GNU programs. @node CPU Portability @section Portability between @sc{cpu}s @cindex data types, and portability @cindex portability, and data types Even GNU systems will differ because of differences among @sc{cpu} types---for example, difference in byte ordering and alignment requirements. It is absolutely essential to handle these differences. However, don't make any effort to cater to the possibility that an @code{int} will be less than 32 bits. We don't support 16-bit machines in GNU. Similarly, don't make any effort to cater to the possibility that @code{long} will be smaller than predefined types like @code{size_t}. For example, the following code is ok: @example printf ("size = %lu\n", (unsigned long) sizeof array); printf ("diff = %ld\n", (long) (pointer2 - pointer1)); @end example 1989 Standard C requires this to work, and we know of only one counterexample: 64-bit programs on Microsoft Windows. We will leave it to those who want to port GNU programs to that environment to figure out how to do it. Predefined file-size types like @code{off_t} are an exception: they are longer than @code{long} on many platforms, so code like the above won't work with them. One way to print an @code{off_t} value portably is to print its digits yourself, one by one. Don't assume that the address of an @code{int} object is also the address of its least-significant byte. This is false on big-endian machines. Thus, don't make the following mistake: @example int c; @dots{} while ((c = getchar ()) != EOF) write (file_descriptor, &c, 1); @end example @noindent Instead, use @code{unsigned char} as follows. (The @code{unsigned} is for portability to unusual systems where @code{char} is signed and where there is integer overflow checking.) @example int c; while ((c = getchar ()) != EOF) @{ unsigned char u = c; write (file_descriptor, &u, 1); @} @end example It used to be ok to not worry about the difference between pointers and integers when passing arguments to functions. However, on most modern 64-bit machines pointers are wider than @code{int}. Conversely, integer types like @code{long long int} and @code{off_t} are wider than pointers on most modern 32-bit machines. Hence it's often better nowadays to use prototypes to define functions whose argument types are not trivial. In particular, if functions accept varying argument counts or types they should be declared using prototypes containing @samp{...} and defined using @file{stdarg.h}. For an example of this, please see the @uref{http://www.gnu.org/software/gnulib/, Gnulib} error module, which declares and defines the following function: @example /* Print a message with `fprintf (stderr, FORMAT, ...)'; if ERRNUM is nonzero, follow it with ": " and strerror (ERRNUM). If STATUS is nonzero, terminate the program with `exit (STATUS)'. */ void error (int status, int errnum, const char *format, ...); @end example A simple way to use the Gnulib error module is to obtain the two source files @file{error.c} and @file{error.h} from the Gnulib library source code repository at @uref{http://git.savannah.gnu.org/@/gitweb/@/?p=gnulib.git}. Here's a sample use: @example #include "error.h" #include #include char *program_name = "myprogram"; FILE * xfopen (char const *name) @{ FILE *fp = fopen (name, "r"); if (! fp) error (1, errno, "cannot read %s", name); return fp; @} @end example @cindex casting pointers to integers Avoid casting pointers to integers if you can. Such casts greatly reduce portability, and in most programs they are easy to avoid. In the cases where casting pointers to integers is essential---such as, a Lisp interpreter which stores type information as well as an address in one word---you'll have to make explicit provisions to handle different word sizes. You will also need to make provision for systems in which the normal range of addresses you can get from @code{malloc} starts far away from zero. @node System Functions @section Calling System Functions @cindex library functions, and portability @cindex portability, and library functions C implementations differ substantially. Standard C reduces but does not eliminate the incompatibilities; meanwhile, many GNU packages still support pre-standard compilers because this is not hard to do. This chapter gives recommendations for how to use the more-or-less standard C library functions to avoid unnecessary loss of portability. @itemize @bullet @item Don't use the return value of @code{sprintf}. It returns the number of characters written on some systems, but not on all systems. @item Be aware that @code{vfprintf} is not always available. @item @code{main} should be declared to return type @code{int}. It should terminate either by calling @code{exit} or by returning the integer status code; make sure it cannot ever return an undefined value. @cindex declaration for system functions @item Don't declare system functions explicitly. Almost any declaration for a system function is wrong on some system. To minimize conflicts, leave it to the system header files to declare system functions. If the headers don't declare a function, let it remain undeclared. While it may seem unclean to use a function without declaring it, in practice this works fine for most system library functions on the systems where this really happens; thus, the disadvantage is only theoretical. By contrast, actual declarations have frequently caused actual conflicts. @item If you must declare a system function, don't specify the argument types. Use an old-style declaration, not a Standard C prototype. The more you specify about the function, the more likely a conflict. @item In particular, don't unconditionally declare @code{malloc} or @code{realloc}. Most GNU programs use those functions just once, in functions conventionally named @code{xmalloc} and @code{xrealloc}. These functions call @code{malloc} and @code{realloc}, respectively, and check the results. Because @code{xmalloc} and @code{xrealloc} are defined in your program, you can declare them in other files without any risk of type conflict. On most systems, @code{int} is the same length as a pointer; thus, the calls to @code{malloc} and @code{realloc} work fine. For the few exceptional systems (mostly 64-bit machines), you can use @strong{conditionalized} declarations of @code{malloc} and @code{realloc}---or put these declarations in configuration files specific to those systems. @cindex string library functions @item The string functions require special treatment. Some Unix systems have a header file @file{string.h}; others have @file{strings.h}. Neither file name is portable. There are two things you can do: use Autoconf to figure out which file to include, or don't include either file. @item If you don't include either strings file, you can't get declarations for the string functions from the header file in the usual way. That causes less of a problem than you might think. The newer standard string functions should be avoided anyway because many systems still don't support them. The string functions you can use are these: @example strcpy strncpy strcat strncat strlen strcmp strncmp strchr strrchr @end example The copy and concatenate functions work fine without a declaration as long as you don't use their values. Using their values without a declaration fails on systems where the width of a pointer differs from the width of @code{int}, and perhaps in other cases. It is trivial to avoid using their values, so do that. The compare functions and @code{strlen} work fine without a declaration on most systems, possibly all the ones that GNU software runs on. You may find it necessary to declare them @strong{conditionally} on a few systems. The search functions must be declared to return @code{char *}. Luckily, there is no variation in the data type they return. But there is variation in their names. Some systems give these functions the names @code{index} and @code{rindex}; other systems use the names @code{strchr} and @code{strrchr}. Some systems support both pairs of names, but neither pair works on all systems. You should pick a single pair of names and use it throughout your program. (Nowadays, it is better to choose @code{strchr} and @code{strrchr} for new programs, since those are the standard names.) Declare both of those names as functions returning @code{char *}. On systems which don't support those names, define them as macros in terms of the other pair. For example, here is what to put at the beginning of your file (or in a header) if you want to use the names @code{strchr} and @code{strrchr} throughout: @example #ifndef HAVE_STRCHR #define strchr index #endif #ifndef HAVE_STRRCHR #define strrchr rindex #endif char *strchr (); char *strrchr (); @end example @end itemize Here we assume that @code{HAVE_STRCHR} and @code{HAVE_STRRCHR} are macros defined in systems where the corresponding functions exist. One way to get them properly defined is to use Autoconf. @node Internationalization @section Internationalization @cindex internationalization @pindex gettext GNU has a library called GNU gettext that makes it easy to translate the messages in a program into various languages. You should use this library in every program. Use English for the messages as they appear in the program, and let gettext provide the way to translate them into other languages. Using GNU gettext involves putting a call to the @code{gettext} macro around each string that might need translation---like this: @example printf (gettext ("Processing file `%s'...")); @end example @noindent This permits GNU gettext to replace the string @code{"Processing file `%s'..."} with a translated version. Once a program uses gettext, please make a point of writing calls to @code{gettext} when you add new strings that call for translation. Using GNU gettext in a package involves specifying a @dfn{text domain name} for the package. The text domain name is used to separate the translations for this package from the translations for other packages. Normally, the text domain name should be the same as the name of the package---for example, @samp{coreutils} for the GNU core utilities. @cindex message text, and internationalization To enable gettext to work well, avoid writing code that makes assumptions about the structure of words or sentences. When you want the precise text of a sentence to vary depending on the data, use two or more alternative string constants each containing a complete sentences, rather than inserting conditionalized words or phrases into a single sentence framework. Here is an example of what not to do: @smallexample printf ("%s is full", capacity > 5000000 ? "disk" : "floppy disk"); @end smallexample If you apply gettext to all strings, like this, @smallexample printf (gettext ("%s is full"), capacity > 5000000 ? gettext ("disk") : gettext ("floppy disk")); @end smallexample @noindent the translator will hardly know that "disk" and "floppy disk" are meant to be substituted in the other string. Worse, in some languages (like French) the construction will not work: the translation of the word "full" depends on the gender of the first part of the sentence; it happens to be not the same for "disk" as for "floppy disk". Complete sentences can be translated without problems: @example printf (capacity > 5000000 ? gettext ("disk is full") : gettext ("floppy disk is full")); @end example A similar problem appears at the level of sentence structure with this code: @example printf ("# Implicit rule search has%s been done.\n", f->tried_implicit ? "" : " not"); @end example @noindent Adding @code{gettext} calls to this code cannot give correct results for all languages, because negation in some languages requires adding words at more than one place in the sentence. By contrast, adding @code{gettext} calls does the job straightforwardly if the code starts out like this: @example printf (f->tried_implicit ? "# Implicit rule search has been done.\n", : "# Implicit rule search has not been done.\n"); @end example Another example is this one: @example printf ("%d file%s processed", nfiles, nfiles != 1 ? "s" : ""); @end example @noindent The problem with this example is that it assumes that plurals are made by adding `s'. If you apply gettext to the format string, like this, @example printf (gettext ("%d file%s processed"), nfiles, nfiles != 1 ? "s" : ""); @end example @noindent the message can use different words, but it will still be forced to use `s' for the plural. Here is a better way, with gettext being applied to the two strings independently: @example printf ((nfiles != 1 ? gettext ("%d files processed") : gettext ("%d file processed")), nfiles); @end example @noindent But this still doesn't work for languages like Polish, which has three plural forms: one for nfiles == 1, one for nfiles == 2, 3, 4, 22, 23, 24, ... and one for the rest. The GNU @code{ngettext} function solves this problem: @example printf (ngettext ("%d files processed", "%d file processed", nfiles), nfiles); @end example @node Character Set @section Character Set @cindex character set @cindex encodings @cindex ASCII characters @cindex non-ASCII characters Sticking to the ASCII character set (plain text, 7-bit characters) is preferred in GNU source code comments, text documents, and other contexts, unless there is good reason to do something else because of the application domain. For example, if source code deals with the French Revolutionary calendar, it is OK if its literal strings contain accented characters in month names like ``Flor@'eal''. Also, it is OK to use non-ASCII characters to represent proper names of contributors in change logs (@pxref{Change Logs}). If you need to use non-ASCII characters, you should normally stick with one encoding, as one cannot in general mix encodings reliably. @node Quote Characters @section Quote Characters @cindex quote characters @cindex locale-specific quote characters @cindex left quote @cindex grave accent In the C locale, GNU programs should stick to plain ASCII for quotation characters in messages to users: preferably 0x60 (@samp{`}) for left quotes and 0x27 (@samp{'}) for right quotes. It is ok, but not required, to use locale-specific quotes in other locales. The @uref{http://www.gnu.org/software/gnulib/, Gnulib} @code{quote} and @code{quotearg} modules provide a reasonably straightforward way to support locale-specific quote characters, as well as taking care of other issues, such as quoting a filename that itself contains a quote character. See the Gnulib documentation for usage details. In any case, the documentation for your program should clearly specify how it does quoting, if different than the preferred method of @samp{`} and @samp{'}. This is especially important if the output of your program is ever likely to be parsed by another program. Quotation characters are a difficult area in the computing world at this time: there are no true left or right quote characters in Latin1; the @samp{`} character we use was standardized there as a grave accent. Moreover, Latin1 is still not universally usable. Unicode contains the unambiguous quote characters required, and its common encoding UTF-8 is upward compatible with Latin1. However, Unicode and UTF-8 are not universally well-supported, either. This may change over the next few years, and then we will revisit this. @node Mmap @section Mmap @findex mmap Don't assume that @code{mmap} either works on all files or fails for all files. It may work on some files and fail on others. The proper way to use @code{mmap} is to try it on the specific file for which you want to use it---and if @code{mmap} doesn't work, fall back on doing the job in another way using @code{read} and @code{write}. The reason this precaution is needed is that the GNU kernel (the HURD) provides a user-extensible file system, in which there can be many different kinds of ``ordinary files.'' Many of them support @code{mmap}, but some do not. It is important to make programs handle all these kinds of files. @node Documentation @chapter Documenting Programs @cindex documentation A GNU program should ideally come with full free documentation, adequate for both reference and tutorial purposes. If the package can be programmed or extended, the documentation should cover programming or extending it, as well as just using it. @menu * GNU Manuals:: Writing proper manuals. * Doc Strings and Manuals:: Compiling doc strings doesn't make a manual. * Manual Structure Details:: Specific structure conventions. * License for Manuals:: Writing the distribution terms for a manual. * Manual Credits:: Giving credit to documentation contributors. * Printed Manuals:: Mentioning the printed manual. * NEWS File:: NEWS files supplement manuals. * Change Logs:: Recording changes. * Man Pages:: Man pages are secondary. * Reading other Manuals:: How far you can go in learning from other manuals. @end menu @node GNU Manuals @section GNU Manuals The preferred document format for the GNU system is the Texinfo formatting language. Every GNU package should (ideally) have documentation in Texinfo both for reference and for learners. Texinfo makes it possible to produce a good quality formatted book, using @TeX{}, and to generate an Info file. It is also possible to generate HTML output from Texinfo source. See the Texinfo manual, either the hardcopy, or the on-line version available through @code{info} or the Emacs Info subsystem (@kbd{C-h i}). Nowadays some other formats such as Docbook and Sgmltexi can be converted automatically into Texinfo. It is ok to produce the Texinfo documentation by conversion this way, as long as it gives good results. Make sure your manual is clear to a reader who knows nothing about the topic and reads it straight through. This means covering basic topics at the beginning, and advanced topics only later. This also means defining every specialized term when it is first used. Programmers tend to carry over the structure of the program as the structure for its documentation. But this structure is not necessarily good for explaining how to use the program; it may be irrelevant and confusing for a user. Instead, the right way to structure documentation is according to the concepts and questions that a user will have in mind when reading it. This principle applies at every level, from the lowest (ordering sentences in a paragraph) to the highest (ordering of chapter topics within the manual). Sometimes this structure of ideas matches the structure of the implementation of the software being documented---but often they are different. An important part of learning to write good documentation is to learn to notice when you have unthinkingly structured the documentation like the implementation, stop yourself, and look for better alternatives. For example, each program in the GNU system probably ought to be documented in one manual; but this does not mean each program should have its own manual. That would be following the structure of the implementation, rather than the structure that helps the user understand. Instead, each manual should cover a coherent @emph{topic}. For example, instead of a manual for @code{diff} and a manual for @code{diff3}, we have one manual for ``comparison of files'' which covers both of those programs, as well as @code{cmp}. By documenting these programs together, we can make the whole subject clearer. The manual which discusses a program should certainly document all of the program's command-line options and all of its commands. It should give examples of their use. But don't organize the manual as a list of features. Instead, organize it logically, by subtopics. Address the questions that a user will ask when thinking about the job that the program does. Don't just tell the reader what each feature can do---say what jobs it is good for, and show how to use it for those jobs. Explain what is recommended usage, and what kinds of usage users should avoid. In general, a GNU manual should serve both as tutorial and reference. It should be set up for convenient access to each topic through Info, and for reading straight through (appendixes aside). A GNU manual should give a good introduction to a beginner reading through from the start, and should also provide all the details that hackers want. The Bison manual is a good example of this---please take a look at it to see what we mean. That is not as hard as it first sounds. Arrange each chapter as a logical breakdown of its topic, but order the sections, and write their text, so that reading the chapter straight through makes sense. Do likewise when structuring the book into chapters, and when structuring a section into paragraphs. The watchword is, @emph{at each point, address the most fundamental and important issue raised by the preceding text.} If necessary, add extra chapters at the beginning of the manual which are purely tutorial and cover the basics of the subject. These provide the framework for a beginner to understand the rest of the manual. The Bison manual provides a good example of how to do this. To serve as a reference, a manual should have an Index that list all the functions, variables, options, and important concepts that are part of the program. One combined Index should do for a short manual, but sometimes for a complex package it is better to use multiple indices. The Texinfo manual includes advice on preparing good index entries, see @ref{Index Entries, , Making Index Entries, texinfo, GNU Texinfo}, and see @ref{Indexing Commands, , Defining the Entries of an Index, texinfo, GNU Texinfo}. Don't use Unix man pages as a model for how to write GNU documentation; most of them are terse, badly structured, and give inadequate explanation of the underlying concepts. (There are, of course, some exceptions.) Also, Unix man pages use a particular format which is different from what we use in GNU manuals. Please include an email address in the manual for where to report bugs @emph{in the text of the manual}. Please do not use the term ``pathname'' that is used in Unix documentation; use ``file name'' (two words) instead. We use the term ``path'' only for search paths, which are lists of directory names. Please do not use the term ``illegal'' to refer to erroneous input to a computer program. Please use ``invalid'' for this, and reserve the term ``illegal'' for activities prohibited by law. Please do not write @samp{()} after a function name just to indicate it is a function. @code{foo ()} is not a function, it is a function call with no arguments. @node Doc Strings and Manuals @section Doc Strings and Manuals Some programming systems, such as Emacs, provide a documentation string for each function, command or variable. You may be tempted to write a reference manual by compiling the documentation strings and writing a little additional text to go around them---but you must not do it. That approach is a fundamental mistake. The text of well-written documentation strings will be entirely wrong for a manual. A documentation string needs to stand alone---when it appears on the screen, there will be no other text to introduce or explain it. Meanwhile, it can be rather informal in style. The text describing a function or variable in a manual must not stand alone; it appears in the context of a section or subsection. Other text at the beginning of the section should explain some of the concepts, and should often make some general points that apply to several functions or variables. The previous descriptions of functions and variables in the section will also have given information about the topic. A description written to stand alone would repeat some of that information; this redundancy looks bad. Meanwhile, the informality that is acceptable in a documentation string is totally unacceptable in a manual. The only good way to use documentation strings in writing a good manual is to use them as a source of information for writing good text. @node Manual Structure Details @section Manual Structure Details @cindex manual structure The title page of the manual should state the version of the programs or packages documented in the manual. The Top node of the manual should also contain this information. If the manual is changing more frequently than or independent of the program, also state a version number for the manual in both of these places. Each program documented in the manual should have a node named @samp{@var{program} Invocation} or @samp{Invoking @var{program}}. This node (together with its subnodes, if any) should describe the program's command line arguments and how to run it (the sort of information people would look for in a man page). Start with an @samp{@@example} containing a template for all the options and arguments that the program uses. Alternatively, put a menu item in some menu whose item name fits one of the above patterns. This identifies the node which that item points to as the node for this purpose, regardless of the node's actual name. The @samp{--usage} feature of the Info reader looks for such a node or menu item in order to find the relevant text, so it is essential for every Texinfo file to have one. If one manual describes several programs, it should have such a node for each program described in the manual. @node License for Manuals @section License for Manuals @cindex license for manuals Please use the GNU Free Documentation License for all GNU manuals that are more than a few pages long. Likewise for a collection of short documents---you only need one copy of the GNU FDL for the whole collection. For a single short document, you can use a very permissive non-copyleft license, to avoid taking up space with a long license. See @uref{http://www.gnu.org/copyleft/fdl-howto.html} for more explanation of how to employ the GFDL. Note that it is not obligatory to include a copy of the GNU GPL or GNU LGPL in a manual whose license is neither the GPL nor the LGPL. It can be a good idea to include the program's license in a large manual; in a short manual, whose size would be increased considerably by including the program's license, it is probably better not to include it. @node Manual Credits @section Manual Credits @cindex credits for manuals Please credit the principal human writers of the manual as the authors, on the title page of the manual. If a company sponsored the work, thank the company in a suitable place in the manual, but do not cite the company as an author. @node Printed Manuals @section Printed Manuals The FSF publishes some GNU manuals in printed form. To encourage sales of these manuals, the on-line versions of the manual should mention at the very start that the printed manual is available and should point at information for getting it---for instance, with a link to the page @url{http://www.gnu.org/order/order.html}. This should not be included in the printed manual, though, because there it is redundant. It is also useful to explain in the on-line forms of the manual how the user can print out the manual from the sources. @node NEWS File @section The NEWS File @cindex @file{NEWS} file In addition to its manual, the package should have a file named @file{NEWS} which contains a list of user-visible changes worth mentioning. In each new release, add items to the front of the file and identify the version they pertain to. Don't discard old items; leave them in the file after the newer items. This way, a user upgrading from any previous version can see what is new. If the @file{NEWS} file gets very long, move some of the older items into a file named @file{ONEWS} and put a note at the end referring the user to that file. @node Change Logs @section Change Logs @cindex change logs Keep a change log to describe all the changes made to program source files. The purpose of this is so that people investigating bugs in the future will know about the changes that might have introduced the bug. Often a new bug can be found by looking at what was recently changed. More importantly, change logs can help you eliminate conceptual inconsistencies between different parts of a program, by giving you a history of how the conflicting concepts arose and who they came from. @menu * Change Log Concepts:: * Style of Change Logs:: * Simple Changes:: * Conditional Changes:: * Indicating the Part Changed:: @end menu @node Change Log Concepts @subsection Change Log Concepts You can think of the change log as a conceptual ``undo list'' which explains how earlier versions were different from the current version. People can see the current version; they don't need the change log to tell them what is in it. What they want from a change log is a clear explanation of how the earlier version differed. The change log file is normally called @file{ChangeLog} and covers an entire directory. Each directory can have its own change log, or a directory can use the change log of its parent directory---it's up to you. Another alternative is to record change log information with a version control system such as RCS or CVS. This can be converted automatically to a @file{ChangeLog} file using @code{rcs2log}; in Emacs, the command @kbd{C-x v a} (@code{vc-update-change-log}) does the job. There's no need to describe the full purpose of the changes or how they work together. However, sometimes it is useful to write one line to describe the overall purpose of a change or a batch of changes. If you think that a change calls for explanation, you're probably right. Please do explain it---but please put the full explanation in comments in the code, where people will see it whenever they see the code. For example, ``New function'' is enough for the change log when you add a function, because there should be a comment before the function definition to explain what it does. In the past, we recommended not mentioning changes in non-software files (manuals, help files, etc.) in change logs. However, we've been advised that it is a good idea to include them, for the sake of copyright records. The easiest way to add an entry to @file{ChangeLog} is with the Emacs command @kbd{M-x add-change-log-entry}. An entry should have an asterisk, the name of the changed file, and then in parentheses the name of the changed functions, variables or whatever, followed by a colon. Then describe the changes you made to that function or variable. @node Style of Change Logs @subsection Style of Change Logs @cindex change logs, style Here are some simple examples of change log entries, starting with the header line that says who made the change and when it was installed, followed by descriptions of specific changes. (These examples are drawn from Emacs and GCC.) @example 1998-08-17 Richard Stallman * register.el (insert-register): Return nil. (jump-to-register): Likewise. * sort.el (sort-subr): Return nil. * tex-mode.el (tex-bibtex-file, tex-file, tex-region): Restart the tex shell if process is gone or stopped. (tex-shell-running): New function. * expr.c (store_one_arg): Round size up for move_block_to_reg. (expand_call): Round up when emitting USE insns. * stmt.c (assign_parms): Round size up for move_block_from_reg. @end example It's important to name the changed function or variable in full. Don't abbreviate function or variable names, and don't combine them. Subsequent maintainers will often search for a function name to find all the change log entries that pertain to it; if you abbreviate the name, they won't find it when they search. For example, some people are tempted to abbreviate groups of function names by writing @samp{* register.el (@{insert,jump-to@}-register)}; this is not a good idea, since searching for @code{jump-to-register} or @code{insert-register} would not find that entry. Separate unrelated change log entries with blank lines. When two entries represent parts of the same change, so that they work together, then don't put blank lines between them. Then you can omit the file name and the asterisk when successive entries are in the same file. Break long lists of function names by closing continued lines with @samp{)}, rather than @samp{,}, and opening the continuation with @samp{(} as in this example: @example * keyboard.c (menu_bar_items, tool_bar_items) (Fexecute_extended_command): Deal with `keymap' property. @end example When you install someone else's changes, put the contributor's name in the change log entry rather than in the text of the entry. In other words, write this: @example 2002-07-14 John Doe * sewing.c: Make it sew. @end example @noindent rather than this: @example 2002-07-14 Usual Maintainer * sewing.c: Make it sew. Patch by jdoe@@gnu.org. @end example As for the date, that should be the date you applied the change. @node Simple Changes @subsection Simple Changes Certain simple kinds of changes don't need much detail in the change log. When you change the calling sequence of a function in a simple fashion, and you change all the callers of the function to use the new calling sequence, there is no need to make individual entries for all the callers that you changed. Just write in the entry for the function being called, ``All callers changed''---like this: @example * keyboard.c (Fcommand_execute): New arg SPECIAL. All callers changed. @end example When you change just comments or doc strings, it is enough to write an entry for the file, without mentioning the functions. Just ``Doc fixes'' is enough for the change log. There's no technical need to make change log entries for documentation files. This is because documentation is not susceptible to bugs that are hard to fix. Documentation does not consist of parts that must interact in a precisely engineered fashion. To correct an error, you need not know the history of the erroneous passage; it is enough to compare what the documentation says with the way the program actually works. However, you should keep change logs for documentation files when the project gets copyright assignments from its contributors, so as to make the records of authorship more accurate. @node Conditional Changes @subsection Conditional Changes @cindex conditional changes, and change logs @cindex change logs, conditional changes C programs often contain compile-time @code{#if} conditionals. Many changes are conditional; sometimes you add a new definition which is entirely contained in a conditional. It is very useful to indicate in the change log the conditions for which the change applies. Our convention for indicating conditional changes is to use square brackets around the name of the condition. Here is a simple example, describing a change which is conditional but does not have a function or entity name associated with it: @example * xterm.c [SOLARIS2]: Include string.h. @end example Here is an entry describing a new definition which is entirely conditional. This new definition for the macro @code{FRAME_WINDOW_P} is used only when @code{HAVE_X_WINDOWS} is defined: @example * frame.h [HAVE_X_WINDOWS] (FRAME_WINDOW_P): Macro defined. @end example Here is an entry for a change within the function @code{init_display}, whose definition as a whole is unconditional, but the changes themselves are contained in a @samp{#ifdef HAVE_LIBNCURSES} conditional: @example * dispnew.c (init_display) [HAVE_LIBNCURSES]: If X, call tgetent. @end example Here is an entry for a change that takes affect only when a certain macro is @emph{not} defined: @example (gethostname) [!HAVE_SOCKETS]: Replace with winsock version. @end example @node Indicating the Part Changed @subsection Indicating the Part Changed Indicate the part of a function which changed by using angle brackets enclosing an indication of what the changed part does. Here is an entry for a change in the part of the function @code{sh-while-getopts} that deals with @code{sh} commands: @example * progmodes/sh-script.el (sh-while-getopts) : Handle case that user-specified option string is empty. @end example @node Man Pages @section Man Pages @cindex man pages In the GNU project, man pages are secondary. It is not necessary or expected for every GNU program to have a man page, but some of them do. It's your choice whether to include a man page in your program. When you make this decision, consider that supporting a man page requires continual effort each time the program is changed. The time you spend on the man page is time taken away from more useful work. For a simple program which changes little, updating the man page may be a small job. Then there is little reason not to include a man page, if you have one. For a large program that changes a great deal, updating a man page may be a substantial burden. If a user offers to donate a man page, you may find this gift costly to accept. It may be better to refuse the man page unless the same person agrees to take full responsibility for maintaining it---so that you can wash your hands of it entirely. If this volunteer later ceases to do the job, then don't feel obliged to pick it up yourself; it may be better to withdraw the man page from the distribution until someone else agrees to update it. When a program changes only a little, you may feel that the discrepancies are small enough that the man page remains useful without updating. If so, put a prominent note near the beginning of the man page explaining that you don't maintain it and that the Texinfo manual is more authoritative. The note should say how to access the Texinfo documentation. Be sure that man pages include a copyright statement and free license. The simple all-permissive license is appropriate for simple man pages (@pxref{License Notices for Other Files,,,maintain,Information for GNU Maintainers}). For long man pages, with enough explanation and documentation that they can be considered true manuals, use the GFDL (@pxref{License for Manuals}). Finally, the GNU help2man program (@uref{http://www.gnu.org/software/help2man/}) is one way to automate generation of a man page, in this case from @option{--help} output. This is sufficient in many cases. @node Reading other Manuals @section Reading other Manuals There may be non-free books or documentation files that describe the program you are documenting. It is ok to use these documents for reference, just as the author of a new algebra textbook can read other books on algebra. A large portion of any non-fiction book consists of facts, in this case facts about how a certain program works, and these facts are necessarily the same for everyone who writes about the subject. But be careful not to copy your outline structure, wording, tables or examples from preexisting non-free documentation. Copying from free documentation may be ok; please check with the FSF about the individual case. @node Managing Releases @chapter The Release Process @cindex releasing Making a release is more than just bundling up your source files in a tar file and putting it up for FTP. You should set up your software so that it can be configured to run on a variety of systems. Your Makefile should conform to the GNU standards described below, and your directory layout should also conform to the standards discussed below. Doing so makes it easy to include your package into the larger framework of all GNU software. @menu * Configuration:: How configuration of GNU packages should work. * Makefile Conventions:: Makefile conventions. * Releases:: Making releases @end menu @node Configuration @section How Configuration Should Work @cindex program configuration @pindex configure Each GNU distribution should come with a shell script named @code{configure}. This script is given arguments which describe the kind of machine and system you want to compile the program for. The @code{configure} script must record the configuration options so that they affect compilation. The description here is the specification of the interface for the @code{configure} script in GNU packages. Many packages implement it using GNU Autoconf (@pxref{Top,, Introduction, autoconf, Autoconf}) and/or GNU Automake (@pxref{Top,, Introduction, automake, Automake}), but you do not have to use these tools. You can implement it any way you like; for instance, by making @code{configure} be a wrapper around a completely different configuration system. Another way for the @code{configure} script to operate is to make a link from a standard name such as @file{config.h} to the proper configuration file for the chosen system. If you use this technique, the distribution should @emph{not} contain a file named @file{config.h}. This is so that people won't be able to build the program without configuring it first. Another thing that @code{configure} can do is to edit the Makefile. If you do this, the distribution should @emph{not} contain a file named @file{Makefile}. Instead, it should include a file @file{Makefile.in} which contains the input used for editing. Once again, this is so that people won't be able to build the program without configuring it first. If @code{configure} does write the @file{Makefile}, then @file{Makefile} should have a target named @file{Makefile} which causes @code{configure} to be rerun, setting up the same configuration that was set up last time. The files that @code{configure} reads should be listed as dependencies of @file{Makefile}. All the files which are output from the @code{configure} script should have comments at the beginning explaining that they were generated automatically using @code{configure}. This is so that users won't think of trying to edit them by hand. The @code{configure} script should write a file named @file{config.status} which describes which configuration options were specified when the program was last configured. This file should be a shell script which, if run, will recreate the same configuration. The @code{configure} script should accept an option of the form @samp{--srcdir=@var{dirname}} to specify the directory where sources are found (if it is not the current directory). This makes it possible to build the program in a separate directory, so that the actual source directory is not modified. If the user does not specify @samp{--srcdir}, then @code{configure} should check both @file{.} and @file{..} to see if it can find the sources. If it finds the sources in one of these places, it should use them from there. Otherwise, it should report that it cannot find the sources, and should exit with nonzero status. Usually the easy way to support @samp{--srcdir} is by editing a definition of @code{VPATH} into the Makefile. Some rules may need to refer explicitly to the specified source directory. To make this possible, @code{configure} can add to the Makefile a variable named @code{srcdir} whose value is precisely the specified directory. In addition, the @samp{configure} script should take options corresponding to most of the standard directory variables (@pxref{Directory Variables}). Here is the list: @example --prefix --exec-prefix --bindir --sbindir --libexecdir --sysconfdir --sharedstatedir --localstatedir --libdir --includedir --oldincludedir --datarootdir --datadir --infodir --localedir --mandir --docdir --htmldir --dvidir --pdfdir --psdir @end example The @code{configure} script should also take an argument which specifies the type of system to build the program for. This argument should look like this: @example @var{cpu}-@var{company}-@var{system} @end example For example, an Athlon-based GNU/Linux system might be @samp{i686-pc-linux-gnu}. The @code{configure} script needs to be able to decode all plausible alternatives for how to describe a machine. Thus, @samp{athlon-pc-gnu/linux} would be a valid alias. There is a shell script called @uref{http://git.savannah.gnu.org/@/gitweb/@/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD, @file{config.sub}} that you can use as a subroutine to validate system types and canonicalize aliases. The @code{configure} script should also take the option @option{--build=@var{buildtype}}, which should be equivalent to a plain @var{buildtype} argument. For example, @samp{configure --build=i686-pc-linux-gnu} is equivalent to @samp{configure i686-pc-linux-gnu}. When the build type is not specified by an option or argument, the @code{configure} script should normally guess it using the shell script @uref{http://git.savannah.gnu.org/@/gitweb/@/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD, @file{config.guess}}. @cindex optional features, configure-time Other options are permitted to specify in more detail the software or hardware present on the machine, to include or exclude optional parts of the package, or to adjust the name of some tools or arguments to them: @table @samp @item --enable-@var{feature}@r{[}=@var{parameter}@r{]} Configure the package to build and install an optional user-level facility called @var{feature}. This allows users to choose which optional features to include. Giving an optional @var{parameter} of @samp{no} should omit @var{feature}, if it is built by default. No @samp{--enable} option should @strong{ever} cause one feature to replace another. No @samp{--enable} option should ever substitute one useful behavior for another useful behavior. The only proper use for @samp{--enable} is for questions of whether to build part of the program or exclude it. @item --with-@var{package} @c @r{[}=@var{parameter}@r{]} The package @var{package} will be installed, so configure this package to work with @var{package}. @c Giving an optional @var{parameter} of @c @samp{no} should omit @var{package}, if it is used by default. Possible values of @var{package} include @samp{gnu-as} (or @samp{gas}), @samp{gnu-ld}, @samp{gnu-libc}, @samp{gdb}, @samp{x}, and @samp{x-toolkit}. Do not use a @samp{--with} option to specify the file name to use to find certain files. That is outside the scope of what @samp{--with} options are for. @item @var{variable}=@var{value} Set the value of the variable @var{variable} to @var{value}. This is used to override the default values of commands or arguments in the build process. For example, the user could issue @samp{configure CFLAGS=-g CXXFLAGS=-g} to build with debugging information and without the default optimization. Specifying variables as arguments to @code{configure}, like this: @example ./configure CC=gcc @end example is preferable to setting them in environment variables: @example CC=gcc ./configure @end example as it helps to recreate the same configuration later with @file{config.status}. However, both methods should be supported. @end table All @code{configure} scripts should accept all of the ``detail'' options and the variable settings, whether or not they make any difference to the particular package at hand. In particular, they should accept any option that starts with @samp{--with-} or @samp{--enable-}. This is so users will be able to configure an entire GNU source tree at once with a single set of options. You will note that the categories @samp{--with-} and @samp{--enable-} are narrow: they @strong{do not} provide a place for any sort of option you might think of. That is deliberate. We want to limit the possible configuration options in GNU software. We do not want GNU programs to have idiosyncratic configuration options. Packages that perform part of the compilation process may support cross-compilation. In such a case, the host and target machines for the program may be different. The @code{configure} script should normally treat the specified type of system as both the host and the target, thus producing a program which works for the same type of machine that it runs on. To compile a program to run on a host type that differs from the build type, use the configure option @option{--host=@var{hosttype}}, where @var{hosttype} uses the same syntax as @var{buildtype}. The host type normally defaults to the build type. To configure a cross-compiler, cross-assembler, or what have you, you should specify a target different from the host, using the configure option @samp{--target=@var{targettype}}. The syntax for @var{targettype} is the same as for the host type. So the command would look like this: @example ./configure --host=@var{hosttype} --target=@var{targettype} @end example The target type normally defaults to the host type. Programs for which cross-operation is not meaningful need not accept the @samp{--target} option, because configuring an entire operating system for cross-operation is not a meaningful operation. Some programs have ways of configuring themselves automatically. If your program is set up to do this, your @code{configure} script can simply ignore most of its arguments. @comment The makefile standards are in a separate file that is also @comment included by make.texinfo. Done by roland@gnu.ai.mit.edu on 1/6/93. @comment For this document, turn chapters into sections, etc. @lowersections @include make-stds.texi @raisesections @node Releases @section Making Releases @cindex packaging You should identify each release with a pair of version numbers, a major version and a minor. We have no objection to using more than two numbers, but it is very unlikely that you really need them. Package the distribution of @code{Foo version 69.96} up in a gzipped tar file with the name @file{foo-69.96.tar.gz}. It should unpack into a subdirectory named @file{foo-69.96}. Building and installing the program should never modify any of the files contained in the distribution. This means that all the files that form part of the program in any way must be classified into @dfn{source files} and @dfn{non-source files}. Source files are written by humans and never changed automatically; non-source files are produced from source files by programs under the control of the Makefile. @cindex @file{README} file The distribution should contain a file named @file{README} which gives the name of the package, and a general description of what it does. It is also good to explain the purpose of each of the first-level subdirectories in the package, if there are any. The @file{README} file should either state the version number of the package, or refer to where in the package it can be found. The @file{README} file should refer to the file @file{INSTALL}, which should contain an explanation of the installation procedure. The @file{README} file should also refer to the file which contains the copying conditions. The GNU GPL, if used, should be in a file called @file{COPYING}. If the GNU LGPL is used, it should be in a file called @file{COPYING.LESSER}. Naturally, all the source files must be in the distribution. It is okay to include non-source files in the distribution, provided they are up-to-date and machine-independent, so that building the distribution normally will never modify them. We commonly include non-source files produced by Bison, @code{lex}, @TeX{}, and @code{makeinfo}; this helps avoid unnecessary dependencies between our distributions, so that users can install whichever packages they want to install. Non-source files that might actually be modified by building and installing the program should @strong{never} be included in the distribution. So if you do distribute non-source files, always make sure they are up to date when you make a new distribution. Make sure that all the files in the distribution are world-readable, and that directories are world-readable and world-searchable (octal mode 755). We used to recommend that all directories in the distribution also be world-writable (octal mode 777), because ancient versions of @code{tar} would otherwise not cope when extracting the archive as an unprivileged user. That can easily lead to security issues when creating the archive, however, so now we recommend against that. Don't include any symbolic links in the distribution itself. If the tar file contains symbolic links, then people cannot even unpack it on systems that don't support symbolic links. Also, don't use multiple names for one file in different directories, because certain file systems cannot handle this and that prevents unpacking the distribution. Try to make sure that all the file names will be unique on MS-DOS. A name on MS-DOS consists of up to 8 characters, optionally followed by a period and up to three characters. MS-DOS will truncate extra characters both before and after the period. Thus, @file{foobarhacker.c} and @file{foobarhacker.o} are not ambiguous; they are truncated to @file{foobarha.c} and @file{foobarha.o}, which are distinct. @cindex @file{texinfo.tex}, in a distribution Include in your distribution a copy of the @file{texinfo.tex} you used to test print any @file{*.texinfo} or @file{*.texi} files. Likewise, if your program uses small GNU software packages like regex, getopt, obstack, or termcap, include them in the distribution file. Leaving them out would make the distribution file a little smaller at the expense of possible inconvenience to a user who doesn't know what other files to get. @node References @chapter References to Non-Free Software and Documentation @cindex references to non-free material A GNU program should not recommend, promote, or grant legitimacy to the use of any non-free program. Proprietary software is a social and ethical problem, and our aim is to put an end to that problem. We can't stop some people from writing proprietary programs, or stop other people from using them, but we can and should refuse to advertise them to new potential customers, or to give the public the idea that their existence is ethical. The GNU definition of free software is found on the GNU web site at @url{http://www.gnu.org/@/philosophy/@/free-sw.html}, and the definition of free documentation is found at @url{http://www.gnu.org/@/philosophy/@/free-doc.html}. The terms ``free'' and ``non-free'', used in this document, refer to those definitions. A list of important licenses and whether they qualify as free is in @url{http://www.gnu.org/@/licenses/@/license-list.html}. If it is not clear whether a license qualifies as free, please ask the GNU Project by writing to @email{licensing@@gnu.org}. We will answer, and if the license is an important one, we will add it to the list. When a non-free program or system is well known, you can mention it in passing---that is harmless, since users who might want to use it probably already know about it. For instance, it is fine to explain how to build your package on top of some widely used non-free operating system, or how to use it together with some widely used non-free program. However, you should give only the necessary information to help those who already use the non-free program to use your program with it---don't give, or refer to, any further information about the proprietary program, and don't imply that the proprietary program enhances your program, or that its existence is in any way a good thing. The goal should be that people already using the proprietary program will get the advice they need about how to use your free program with it, while people who don't already use the proprietary program will not see anything likely to lead them to take an interest in it. If a non-free program or system is obscure in your program's domain, your program should not mention or support it at all, since doing so would tend to popularize the non-free program more than it popularizes your program. (You cannot hope to find many additional users for your program among the users of Foobar, if the existence of Foobar is not generally known among people who might want to use your program.) Sometimes a program is free software in itself but depends on a non-free platform in order to run. For instance, many Java programs depend on some non-free Java libraries. To recommend or promote such a program is to promote the other programs it needs. This is why we are careful about listing Java programs in the Free Software Directory: we don't want to promote the non-free Java libraries. We hope this particular problem with Java will be gone by and by, as we replace the remaining non-free standard Java libraries with free software, but the general principle will remain the same: don't recommend, promote or legitimize programs that depend on non-free software to run. Some free programs strongly encourage the use of non-free software. A typical example is @command{mplayer}. It is free software in itself, and the free code can handle some kinds of files. However, @command{mplayer} recommends use of non-free codecs for other kinds of files, and users that install @command{mplayer} are very likely to install those codecs along with it. To recommend @command{mplayer} is, in effect, to promote use of the non-free codecs. Thus, you should not recommend programs that strongly encourage the use of non-free software. This is why we do not list @command{mplayer} in the Free Software Directory. A GNU package should not refer the user to any non-free documentation for free software. Free documentation that can be included in free operating systems is essential for completing the GNU system, or any free operating system, so encouraging it is a priority; to recommend use of documentation that we are not allowed to include undermines the impetus for the community to produce documentation that we can include. So GNU packages should never recommend non-free documentation. By contrast, it is ok to refer to journal articles and textbooks in the comments of a program for explanation of how it functions, even though they are non-free. This is because we don't include such things in the GNU system even they are free---they are outside the scope of what a software distribution needs to include. Referring to a web site that describes or recommends a non-free program is promoting that program, so please do not make links (or mention by name) web sites that contain such material. This policy is relevant particularly for the web pages for a GNU package. Following links from nearly any web site can lead eventually to non-free software; this is inherent in the nature of the web. So it makes no sense to criticize a site for having such links. As long as the site does not itself recommend a non-free program, there is no need to consider the question of the sites that it links to for other reasons. Thus, for example, you should not refer to AT&T's web site if that recommends AT&T's non-free software packages; you should not refer to a site that links to AT&T's site presenting it as a place to get some non-free program, because that link recommends and legitimizes the non-free program. However, that a site contains a link to AT&T's web site for some other purpose (such as long-distance telephone service) is not an objection against it. @node GNU Free Documentation License @appendix GNU Free Documentation License @cindex FDL, GNU Free Documentation License @include fdl.texi @node Index @unnumbered Index @printindex cp @bye Local variables: eval: (add-hook 'write-file-hooks 'time-stamp) time-stamp-start: "@set lastupdate " time-stamp-end: "$" time-stamp-format: "%:b %:d, %:y" compile-command: "cd work.s && make" End: