/* @(#)s_rint.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* FUNCTION <>, <>---round to integer INDEX rint INDEX rintf SYNOPSIS #include double rint(double <[x]>); float rintf(float <[x]>); DESCRIPTION The <> functions round their argument to an integer value in floating-point format, using the current rounding direction. They raise the "inexact" floating-point exception if the result differs in value from the argument. See the <> functions for the same function with the "inexact" floating-point exception never being raised. Newlib does not directly support floating-point exceptions. The <> functions are written so that the "inexact" exception is raised in hardware implementations that support it, even though Newlib does not provide access. RETURNS <[x]> rounded to an integral value, using the current rounding direction. PORTABILITY ANSI C, POSIX SEEALSO <>, <> */ /* * rint(x) * Return x rounded to integral value according to the prevailing * rounding mode. * Method: * Using floating addition. * Whenever a fraction is present, if the second or any following bit after * the radix point is set, limit to the second radix point to avoid * possible double rounding in the TWO52 +- steps (in case guard bits are * used). Specifically, if have any, chop off bits past the 2nd place and * set the second place. * (e.g. 2.0625=0b10.0001 => 0b10.01=2.25; * 2.3125=0b10.011 => 0b10.01=2.25; * 1.5625= 0b1.1001 => 0b1.11=1.75; * 1.9375= 0b1.1111 => 0b1.11=1.75. * Pseudo-code: if(x.frac & ~0b0.10) x.frac = (x.frac & 0b0.11) | 0b0.01;). * Exception: * Inexact flag raised if x not equal to rint(x). */ #include "fdlibm.h" #ifndef _DOUBLE_IS_32BITS #ifdef __STDC__ static const double #else static double #endif TWO52[2]={ 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */ }; #ifdef __STDC__ double rint(double x) #else double rint(x) double x; #endif { __int32_t i0,j0,sx; __uint32_t i,i1; double t; volatile double w; EXTRACT_WORDS(i0,i1,x); sx = (i0>>31)&1; /* sign */ j0 = ((i0>>20)&0x7ff)-0x3ff; /* exponent */ if(j0<20) { /* no integral bits in LS part */ if(j0<0) { /* x is fractional or 0 */ if(((i0&0x7fffffff)|i1)==0) return x; /* x == 0 */ i1 |= (i0&0x0fffff); i0 &= 0xfffe0000; i0 |= ((i1|-i1)>>12)&0x80000; SET_HIGH_WORD(x,i0); w = TWO52[sx]+x; t = w-TWO52[sx]; GET_HIGH_WORD(i0,t); SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31)); return t; } else { /* x has integer and maybe fraction */ i = (0x000fffff)>>j0; if(((i0&i)|i1)==0) return x; /* x is integral */ i>>=1; if(((i0&i)|i1)!=0) { /* 2nd or any later bit after radix is set */ if(j0==19) i1 = 0x80000000; else i1 = 0; i0 = (i0&(~i))|((0x40000)>>j0); } } } else if (j0>51) { if(j0==0x400) return x+x; /* inf or NaN */ else return x; /* x is integral */ } else { i = ((__uint32_t)(0xffffffff))>>(j0-20); if((i1&i)==0) return x; /* x is integral */ i>>=1; if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20)); } INSERT_WORDS(x,i0,i1); w = TWO52[sx]+x; return w-TWO52[sx]; } #endif /* _DOUBLE_IS_32BITS */