libc/newlib/libc/machine/powerpc/vec_mallocr.c

425 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* This code is based on mallocr.c written by Doug Lea which is released
to the public domain. Any changes to libc/stdlib/mallocr.c
should be reflected here as well. */
/* Preliminaries */
#ifndef __STD_C
#ifdef __STDC__
#define __STD_C 1
#else
#if __cplusplus
#define __STD_C 1
#else
#define __STD_C 0
#endif /*__cplusplus*/
#endif /*__STDC__*/
#endif /*__STD_C*/
#ifndef Void_t
#if __STD_C
#define Void_t void
#else
#define Void_t char
#endif
#endif /*Void_t*/
#if __STD_C
#include <stddef.h> /* for size_t */
#else
#include <sys/types.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/config.h>
/*
In newlib, all the publically visible routines take a reentrancy
pointer. We don't currently do anything much with it, but we do
pass it to the lock routine.
*/
#include <reent.h>
#include <string.h>
#include <malloc.h>
#define MALLOC_LOCK __malloc_lock(reent_ptr)
#define MALLOC_UNLOCK __malloc_unlock(reent_ptr)
#ifdef SMALL_MEMORY
#define malloc_getpagesize (128)
#else
#define malloc_getpagesize (4096)
#endif
#if __STD_C
extern void __malloc_lock(struct _reent *);
extern void __malloc_unlock(struct _reent *);
#else
extern void __malloc_lock();
extern void __malloc_unlock();
#endif
#if __STD_C
#define RARG struct _reent *reent_ptr,
#define RONEARG struct _reent *reent_ptr
#else
#define RARG reent_ptr
#define RONEARG reent_ptr
#define RDECL struct _reent *reent_ptr;
#endif
#define RCALL reent_ptr,
#define RONECALL reent_ptr
/*
Define MALLOC_LOCK and MALLOC_UNLOCK to C expressions to run to
lock and unlock the malloc data structures. MALLOC_LOCK may be
called recursively.
*/
#ifndef MALLOC_LOCK
#define MALLOC_LOCK
#endif
#ifndef MALLOC_UNLOCK
#define MALLOC_UNLOCK
#endif
/*
INTERNAL_SIZE_T is the word-size used for internal bookkeeping
of chunk sizes. On a 64-bit machine, you can reduce malloc
overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
at the expense of not being able to handle requests greater than
2^31. This limitation is hardly ever a concern; you are encouraged
to set this. However, the default version is the same as size_t.
*/
#ifndef INTERNAL_SIZE_T
#define INTERNAL_SIZE_T size_t
#endif
/*
Following is needed on implementations whereby long > size_t.
The problem is caused because the code performs subtractions of
size_t values and stores the result in long values. In the case
where long > size_t and the first value is actually less than
the second value, the resultant value is positive. For example,
(long)(x - y) where x = 0 and y is 1 ends up being 0x00000000FFFFFFFF
which is 2*31 - 1 instead of 0xFFFFFFFFFFFFFFFF. This is due to the
fact that assignment from unsigned to signed won't sign extend.
*/
#ifdef SIZE_T_SMALLER_THAN_LONG
#define long_sub_size_t(x, y) ( (x < y) ? -((long)(y - x)) : (x - y) );
#else
#define long_sub_size_t(x, y) ( (long)(x - y) )
#endif
/*
REALLOC_ZERO_BYTES_FREES should be set if a call to
realloc with zero bytes should be the same as a call to free.
Some people think it should. Otherwise, since this malloc
returns a unique pointer for malloc(0), so does realloc(p, 0).
*/
/* The following macros are only invoked with (2n+1)-multiples of
INTERNAL_SIZE_T units, with a positive integer n. This is exploited
for fast inline execution when n is small. */
#define MALLOC_ZERO(charp, nbytes) \
do { \
INTERNAL_SIZE_T mzsz = (nbytes); \
if(mzsz <= 9*sizeof(mzsz)) { \
INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
*mz++ = 0; \
if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
*mz++ = 0; \
if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
*mz++ = 0; }}} \
*mz++ = 0; \
*mz++ = 0; \
*mz = 0; \
} else memset((charp), 0, mzsz); \
} while(0)
#define MALLOC_COPY(dest,src,nbytes) \
do { \
INTERNAL_SIZE_T mcsz = (nbytes); \
if(mcsz <= 9*sizeof(mcsz)) { \
INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
*mcdst++ = *mcsrc++; \
if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
*mcdst++ = *mcsrc++; \
if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
*mcdst++ = *mcsrc++; }}} \
*mcdst++ = *mcsrc++; \
*mcdst++ = *mcsrc++; \
*mcdst = *mcsrc ; \
} else memcpy(dest, src, mcsz); \
} while(0)
#define vECCALLOc _vec_calloc_r
#define fREe _free_r
#define mEMALIGn _memalign_r
#define vECREALLOc _vec_realloc_r
#
#if __STD_C
Void_t* vECREALLOc(RARG Void_t*, size_t);
Void_t* vECCALLOc(RARG size_t, size_t);
#else
Void_t* vECREALLOc();
Void_t* vECCALLOc();
#endif
#ifdef __cplusplus
}; /* end of extern "C" */
#endif
/*
Type declarations
*/
struct malloc_chunk
{
INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;
};
typedef struct malloc_chunk* mchunkptr;
/* sizes, alignments */
#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
#define MALLOC_ALIGN 16
#define MALLOC_ALIGNMENT 16
#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
#define MINSIZE (sizeof(struct malloc_chunk))
/* conversion from malloc headers to user pointers, and back */
#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
/* pad request bytes into a usable size */
#define request2size(req) \
(((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
(long)(MINSIZE + MALLOC_ALIGN_MASK)) ? ((MINSIZE + MALLOC_ALIGN_MASK) & ~(MALLOC_ALIGN_MASK)) : \
(((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
/* Check if m has acceptable alignment */
#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
/*
Physical chunk operations
*/
/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
#define PREV_INUSE 0x1
/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
#define IS_MMAPPED 0x2
/* Bits to mask off when extracting size */
#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
/* Ptr to next physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
/* Ptr to previous physical malloc_chunk */
#define prev_chunk(p)\
((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
/* Treat space at ptr + offset as a chunk */
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
/*
Dealing with use bits
*/
/* extract p's inuse bit */
#define inuse(p)\
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
/* extract inuse bit of previous chunk */
#define prev_inuse(p) ((p)->size & PREV_INUSE)
/* check for mmap()'ed chunk */
#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
/* set/clear chunk as in use without otherwise disturbing */
#define set_inuse(p)\
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
#define clear_inuse(p)\
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
/* check/set/clear inuse bits in known places */
#define inuse_bit_at_offset(p, s)\
(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
#define set_inuse_bit_at_offset(p, s)\
(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
#define clear_inuse_bit_at_offset(p, s)\
(((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
/*
Dealing with size fields
*/
/* Get size, ignoring use bits */
#define chunksize(p) ((p)->size & ~(SIZE_BITS))
/* Set size at head, without disturbing its use bit */
#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
/* Set size/use ignoring previous bits in header */
#define set_head(p, s) ((p)->size = (s))
#ifdef DEFINE_VECREALLOC
#if __STD_C
Void_t* vECREALLOc(RARG Void_t* oldmem, size_t bytes)
#else
Void_t* vECREALLOc(RARG oldmem, bytes) RDECL Void_t* oldmem; size_t bytes;
#endif
{
INTERNAL_SIZE_T nb; /* padded request size */
mchunkptr oldp; /* chunk corresponding to oldmem */
INTERNAL_SIZE_T oldsize; /* its size */
mchunkptr newp; /* chunk to return */
INTERNAL_SIZE_T newsize; /* its size */
Void_t* newmem; /* corresponding user mem */
mchunkptr remainder; /* holds split off extra space from newp */
INTERNAL_SIZE_T remainder_size; /* its size */
#ifdef REALLOC_ZERO_BYTES_FREES
if (bytes == 0) { fREe(RCALL oldmem); return 0; }
#endif
/* realloc of null is supposed to be same as malloc */
if (oldmem == 0) return mEMALIGn(RCALL 16, bytes);
MALLOC_LOCK;
newp = oldp = mem2chunk(oldmem);
newsize = oldsize = chunksize(oldp);
nb = request2size(bytes);
if ((long)(oldsize) < (long)(nb))
{
/* Must allocate */
newmem = mEMALIGn (RCALL 16, bytes);
if (newmem == 0) /* propagate failure */
{
MALLOC_UNLOCK;
return 0;
}
/* copy, free, and exit */
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
fREe(RCALL oldmem);
MALLOC_UNLOCK;
return newmem;
}
remainder_size = long_sub_size_t(newsize, nb);
if (remainder_size >= (long)MINSIZE) /* split off remainder */
{
remainder = chunk_at_offset(newp, nb);
set_head_size(newp, nb);
set_head(remainder, remainder_size | PREV_INUSE);
set_inuse_bit_at_offset(remainder, remainder_size);
fREe(RCALL chunk2mem(remainder)); /* let free() deal with it */
}
else
{
set_head_size(newp, newsize);
set_inuse_bit_at_offset(newp, newsize);
}
MALLOC_UNLOCK;
return chunk2mem(newp);
}
#endif /* DEFINE_VECREALLOC */
#ifdef DEFINE_VECCALLOC
/*
calloc calls malloc, then zeroes out the allocated chunk.
*/
#if __STD_C
Void_t* vECCALLOc(RARG size_t n, size_t elem_size)
#else
Void_t* vECCALLOc(RARG n, elem_size) RDECL size_t n; size_t elem_size;
#endif
{
INTERNAL_SIZE_T sz = n * elem_size;
Void_t* mem;
mem = mEMALIGn (RCALL 16, sz);
if (mem == 0)
{
return 0;
}
MALLOC_ZERO(mem, sz);
return mem;
}
#endif /* DEFINE_VECCALLOC */