#include #include <7705.h> extern void print_hex(unsigned int value, int x, int y); extern void print_bin(unsigned char value, int x, int y); //--- // Interrupt codes. //--- #define IC_RTC_PRI 0x4a0 #define IC_PINT07 0x700 //--- // Keyboard management. //--- extern volatile unsigned char keyboard_state[10]; extern void keyboard_interrupt(void); /* kdelay() Low-level sleep using the watchdog. */ static void kdelay(void) { #define r4(str) str str str str __asm__ ( r4("nop\n\t") r4("nop\n\t") r4("nop\n\t") ); #undef r4 /* const int delay = 0xf4; // Disabling the watchdog timer interrupt and resetting the // configuration. Setting the delay. INTC.IPRB.BIT._WDT = 0; WDT.WTCSR.WRITE = 0xa500; WDT.WTCNT.WRITE = 0x5a00 | (delay & 0xff); // Counting on Po/256. WDT.WTCSR.WRITE = 0xa505; // Starting the timer (sets again to Po/256). WDT.WTCSR.WRITE = 0xa585; // Waiting until it overflows (delaying), then clearing the overflow // flag. while((WDT.WTCSR.READ.BYTE & 0x08) == 0); WDT.WTCSR.WRITE = 0xa500 | (WDT.WTCSR.READ.BYTE & 0xf7); // Resetting the configuration and the counter. WDT.WTCSR.WRITE = 0xa500; WDT.WTCSR.WRITE = 0x5a00; // Enabling back the watchdog timer interrupt. INTC.IPRB.BIT._WDT = GINT_INTP_WDT; */ } /* krow() Reads a keyboard row. @arg row Row to check (0 <= row <= 9). @return Bit-based representation of pressed keys in the checked row. */ static int krow(int row) { // '11' on the active row, '00' everywhere else. unsigned short smask = 0x0003 << ((row % 8) * 2); // '0' on the active row, '1' everywhere else. unsigned char cmask = ~(1 << (row % 8)); // Line results. int result = 0; if(row < 0 || row > 9) return 0; // Initial configuration. PFC.PBCR.WORD = 0xaaaa; PFC.PMCR.WORD = (PFC.PMCR.WORD & 0xff00) | 0x0055; kdelay(); if(row < 8) { // Configuring port B/M as input except for the row to check, // which has to be an output. This sets '01' (output) on the // active row, '10' (input) everywhere else. PFC.PBCR.WORD = 0xaaaa ^ smask; PFC.PMCR.WORD = (PFC.PMCR.WORD & 0xff00) | 0x00aa; kdelay(); // Every bit set to 1 except the active row bit. PB.DR.BYTE = cmask; PM.DR.BYTE = (PM.DR.BYTE & 0xf0) | 0x0f; kdelay(); } else { // The same, but deals with port M. PFC.PBCR.WORD = 0xaaaa; PFC.PMCR.WORD = ((PFC.PMCR.WORD & 0xff00) | 0x00aa) ^ smask; kdelay(); PB.DR.BYTE = 0xff; PM.DR.BYTE = (PM.DR.BYTE & 0xf0) | cmask; kdelay(); } // Reading the keyboard row. result = ~PA.DR.BYTE; kdelay(); // Re-initializing the port configuration and data. PFC.PBCR.WORD = 0xaaaa; PFC.PMCR.WORD = (PFC.PMCR.WORD & 0xff00) | 0x00aa; kdelay(); PFC.PBCR.WORD = 0x5555; PFC.PMCR.WORD = (PFC.PMCR.WORD & 0xff00) | 0x0055; kdelay(); PB.DR.BYTE = 0x00; PM.DR.BYTE &= 0xf0; return result; } /* kstate() Updates the keyboard state. */ static void kstate(void) { int i; for(i = 0; i < 10; i++) keyboard_state[i] = krow(i); keyboard_interrupt(); } //--- // Interrupt handler. //--- void gint_7705(void) { volatile unsigned int *intevt2 = (unsigned int *)0xa4000000; unsigned int code = *intevt2; switch(code) { case IC_RTC_PRI: // Clearing the interrupt flag. RTC.RCR2.BIT.PEF = 0; // Updating the keyboard state. kstate(); /* print_bin(keyboard_state[0], 0, 2); print_bin(keyboard_state[1], 0, 3); print_bin(keyboard_state[2], 0, 4); print_bin(keyboard_state[3], 0, 5); print_bin(keyboard_state[4], 0, 6); print_bin(keyboard_state[5], 9, 2); print_bin(keyboard_state[6], 9, 3); print_bin(keyboard_state[7], 9, 4); print_bin(keyboard_state[8], 9, 5); print_bin(keyboard_state[9], 9, 6); */ break; } } //--- // Setup. //--- static unsigned short iprs[8]; static void gint_priority_lock_7705(void) { // Saving the interrupt masks from registers IPRA to IPRH. iprs[0] = INTC.IPRA.WORD; iprs[1] = INTC.IPRB.WORD; iprs[2] = INTX.IPRC.WORD; iprs[3] = INTX.IPRD.WORD; iprs[4] = INTX.IPRE.WORD; iprs[5] = INTX.IPRF.WORD; iprs[6] = INTX.IPRG.WORD; iprs[7] = INTX.IPRH.WORD; // Disabling everything by default to avoid receiving an interrupt that // the handler doesn't handle, which would cause the user program to // freeze. INTC.IPRA.WORD = 0x0000; INTC.IPRB.WORD = 0x0000; INTX.IPRC.WORD = 0x0000; INTX.IPRD.WORD = 0x0000; INTX.IPRE.WORD = 0x0000; INTX.IPRF.WORD = 0x0000; INTX.IPRG.WORD = 0x0000; INTX.IPRH.WORD = 0x0000; // Allowing RTC, which handles keyboard. INTC.IPRA.BIT._RTC = GINT_INTP_RTC; } static void gint_priority_unlock_7705(void) { // Restoring the saved states. INTC.IPRA.WORD = iprs[0]; INTC.IPRB.WORD = iprs[1]; INTX.IPRC.WORD = iprs[2]; INTX.IPRD.WORD = iprs[3]; INTX.IPRE.WORD = iprs[4]; INTX.IPRF.WORD = iprs[5]; INTX.IPRG.WORD = iprs[6]; INTX.IPRH.WORD = iprs[7]; } void gint_setup_7705(void) { gint_priority_lock_7705(); // Configuring the RTC to have a 16-Hz keyboard. RTC.RCR2.BYTE = 0x39; } void gint_stop_7705(void) { gint_priority_unlock_7705(); }