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Windows CE supported the Hitachi SuperH-3 and SuperH-4 processors. These were commonly abbreviated SH-3 and SH-
4, or just SH3 and SH4, and the architecture series was known as SHx.

I'll cover the SH-3 processor in this series, with some nods to the SH-4 as they arise. But the only binaries | have available
for reverse-engineering are SH-3 binaries, so that’s where my focus will be.

The SH-3 is the next step in the processor series that started with the SH-1 and SH-2. It was succeeded by the SH-4 as
well as the offshoots SH-3e and SH-3-DSP. The SH-4 is probably most famous for being the processor behind the Sega
Dreamcast.

As with all the processor retrospective series, I'm going to focus on how Windows CE used the processor in user mode,
with particular focus on the instructions you will see in compiled code.

The SH-3 is a 32-bit RISC-style (load/store) processor with fixed-length 16-bit instructions. The small instruction size
permits higher code density than its contemporaries, with Hitachi claiming a code size reduction of a third to a half

compared to processors with 32-bit instructions. The design was apparently so successful that ARM licensed it for their
Thumb instruction set.

The SH-3 can operate in either big-endian or little-endian mode. Windows CE uses it in little-endian mode.

The SH-3 has sixteen general-purpose integer registers, each 32 bits wide, and formally named r0 through r15. They are
conventionally used as follows:

Register  Meaning Preserved?
r0 return value  No
r1 No
r2 No
r3 No
r4 argument1  No
rb5 argument2  No
ré argument3  No
r7 argument4  No
ré Yes
r9 Yes
r10 Yes
r11 Yes
r12 Yes
r13 Yes

r14, aka fp frame pointer Yes

r15, aka sp stack pointer Yes
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We’'ll learn more about the conventions when we study calling_conventions.

There are actually two sets (banks) of the first eight registers (r0 through r7). User-mode code uses only bank 0, but kernel
mode can choose whether it uses bank 0 or bank 1. (And when it’s using one bank, kernel mode has special instructions
available to access the registers from the other bank.)

The SH-3 does not support floating point operations, but the SH-4 does. There are sixteen single-precision floating point
registers which are architecturally named fpr0 through fpr15, but which the Microsoft assembler calls frO through fr15. They
can be paired up to produce eight double-precision floating point registers:

Double-precision register Single-precision register pair

dr0 fr0 fr1
dr2 fr2 fr3
dr4 fr4 fr5
dré fré fr7
ar8 fr8 fr9
ar10 fr10 fr11
ar12 fr12 fr13
dr14 fr14 fr15

If you try to perform a floating point operation on an SH-3, it will trap, and the kernel will emulate the instruction. As a result,
floating point on an SH-3 is very slow.

Windows NT requires that the stack be kept on a 4-byte boundary. | did not observe any red zone.

There are also some special registers:

Register Meaning Preserved? Notes

pc program counter duh instruction pointer, must be even
gbr global base register No bonus pointer register

sr status register No Flags

mach multiply and accumulate high No For multiply-add operations
macl multiply and accumulate low  No For multiply-add operations

pr procedure register Yes Return address

Some calling conventions for the SH-3 say that mach and macl are preserved, or that gbr is reserved, but in Windows CE,
they are all scratch.

We'll take a closer look at the status register later.

The architectural names for data sizes are as follows:

¢ byte: 8-bit value

« word: 16-bit value

* longword: 32-bit value
e quadword: 64-bit value

Unaligned memory accesses will fault. We'll look more closely at unaligned memory access later.

The SH-3 has branch delay slots. Ugh, branch delay slots. What's worse is that some branch instructions have branch
delay slots and some don’t. Yikes! We'll discuss this in more detail when we get to control transfer.

Instructions on the SH-3 are generally written with source on the left and destination on the right. For example,

MoV rl, r2 ; move rl to r2

https://devblogs.microsoft.com/oldnewthing/20190805-00/?p=102749 2/3


https://devblogs.microsoft.com/oldnewthing/20190820-00/?p=102792
https://devblogs.microsoft.com/oldnewthing/20190807-00/?p=102769
https://devblogs.microsoft.com/oldnewthing/20190821-00/?p=102794
https://devblogs.microsoft.com/oldnewthing/20190816-00/?p=102788

08/02/2024 14:55 The SuperH-3, part 1: Introduction - The Old New Thing

The SH-3 can potentially retire two instructions per cycle, although internal resource conflicts may prevent that. For
example, an ADD can execute in parallel with a comparison instruction, but it cannot execute in parallel with a SUB
instruction. In the case of a resource conflict, only one instruction is retired during that cycle.

After an instruction that modifies flags, the new flags are not available for a cycle, and after a load instruction, the result is
not available for two cycles. There are other pipeline hazards, but those are the ones you are likely to encounter. If you try
to use the results of a prior instruction too soon, the processor will stall. (Don’t forget that the SH-3 is dual-issue, so two
cycles can mean up to four instructions.)

Raymbnd Chen
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The SH-3 supports a large number of addressing modes, which is somewhat unusual for a RISC processor.
When | write operand size, | mean 1 for byte access, 2 for word access, and 4 for longword access.

The mnemonic for many of the addressing modes is that @x uses x as the address, and @(x, y) first adds x and y, and
then uses the sum to form the address.

Immediate: The value is a constant.
MoV #imm, Rn ; Copy sign-extended byte constant to Rn

There is obviously no “store” version of this instruction.

Register direct: The value is taken directly from or stored directly to a register.
MoV Rm, Rn ; Copy Rm to Rn
Register indirect: The value is read from or written to memory whose address is provided by a register.

MOV.B  Rm, @Rn
MOV. Rm, @Rn
MOV.L  Rm, @Rn

Store byte in Rm to address in Rn
Store word in Rm to address in Rn
Store longword in Rm to address in Rn

=
e owe

..

MOV.B  @Rm, Rn Load and sign-extend byte from address in Rm to Rn
MOV. @Rm, Rn ; Load and sign-extend word from address in Rm to Rn
MOV.L  @Rm, Rn Load longword from address in Rm to Rn

=
..

[

Register indirect with post-increment: The value is read from memory whose address is provided by a register, and then the
register is increased by the operand size.

MOV.B  @Rm+, Rn ; Load and sign-extend byte from address in Rm to Rn,
then increment Rm by 1

[

MOV.W  @Rm+, Rn ; Load and sign-extend word from address in Rm to Rn,
then increment Rm by 2

..

MOV.L  @Rm+, Rn ; Load longword from address in Rm to Rn,
then increment Rm by 4

..

Post-increment is supported only by load instructions. You cannot post-increment a store.
This instruction is used primarily to pop values from the stack.

Register indirect with pre-decrement: The register is decreased by the operand size, and then the decremented value
provides the address.

MOV.B  Rm, @-Rn Decrement Rn by 1,

then store byte in Rm to address in Rn

[

..

MOV.W  Rm, @-Rn Decrement Rn by 2,

then store word in Rm to address in Rn

..

..

MOV.L Rm, @-Rn ; Decrement Rn by 2,
then store longword in Rm to address in Rn

[
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Pre-decrement is supported only by store instructions. You cannot pre-decrement a load.
This instruction is used primarily to push values to the stack.

Register indirect with displacement: A small unsigned constant is added to the register, and the result is the address to be
accessed. The constant must be a multiple of the operand size, up to 15 times the operand size. In other words, for byte
access, the offset is an integer from 0 to 15; for word access, the offset is an even integer from 0 to 30; and for longword
access, the offset is a multiple of four from 0 to 60.

MOV.B  @(disp, Rm), r@ ; Load sign-extended byte from (disp + Rm) to ro
MOV.W  @(disp, Rm), re ; Load sign-extended word from (disp + Rm) to ro
MOV.L  @(disp, Rm), Rn ; Load longword from (disp + Rm) to Rn

MOV.B  r@, @(disp, Rn) ; Store byte in ro@ to address (disp + Rn)

MOV.W  r@, @(disp, Rn) ; Store word in r@ to address (disp + Rn)

MOV.L  Rm, @(disp, Rn) ; Store longword in Rm to address (disp + Rn)

https://devblogs.microsoft.com/oldnewthing/20190806-17/?p=102752

Note that if you are accessing a byte or word, then the value must be stored from or loaded into the r0 register. If you are
accessing a longword, then any register can be the target.

Indexed register indirect: The value in r0 is added to the value of the other register, and the result is the address to be
accessed. Note that the first register is always r0.

MOV.B  @(r@, Rm), Rn ; Load sign-extended byte from (ré + Rm) to Rn
MOV.W  @(re, Rm), Rn ; Load sign-extended word from (r@ + Rm) to Rn
MOV.L  @(r@, Rm), Rn ; Load longword from (re + Rm) to Rn

MOV.B  Rm, @(re@, Rn) ; Store byte in Rm to address (re + Rn)

MOV.W  Rm, @(re, Rn) ; Store word in Rm to address (re + Rn)

MOV.L Rm, @(r@, Rn) ; Store longword in Rm to address (re + Rn)

GBR indirect with displacement: A small unsigned constant is added to the gbr register, and the result is the address to be
accessed. The constant must be a multiple of the operand size, up to 255 times the operand size. In practice, the operand
size is 4 (longword), so the reach is 1KB.

MOV.B  @(disp, GBR), r@ ; Load sign-extended byte from (disp + GBR) to ro
MOV.W  @(disp, GBR), r@ ; Load sign-extended word from (disp + GBR) to ro
MOV.L  @(disp, GBR), re@ ; Load longword from (disp + GBR) to ro

MOV.B  r@, @(disp, GBR) ; Store byte in re to address (disp + GBR)

MOV.W  ro@, @(disp, GBR) ; Store word in r@ to address (disp + GBR)

MOV.L ro, @(disp, GBR) ; Store longword in r@ to address (disp + GBR)

The value must be stored from or loaded into the rO register.

PC-relative with displacement: A small unsigned constant is added to the pc register, and then 4 is added, and the result is
the address to be accessed. The constant must be a multiple of the operand size, up to 255 times the operand size. In
practice, the operand size is usually 4 (longword), in which case the reach is 1KB.

H Note: No byte version
MOV.W  @(disp, PC), Rn ; Load sign-extended word from (disp + PC + 4) to Rn
MOV.L  @(disp, PC), Rn ; Load longword from ((disp + PC + 4) & ~3) to Rn

If the operand is a longword, then the bottom two bits of the result are forced to zero before using it to access memory. If
this weren’t done, then it wouldn’t be possible to access 32-bit PC-relative data from instructions at addresses that are not
exact multiples of 4!

There is no instruction for loading large constants into registers. Instead, you put the constants in the code segment and
use a PC-relative load to load them into a register. Since the reach is only 1KB, you need to break up your functions into
1KB chunks in order to inject constants.

The disassembler is kind enough to perform the calculation of the effective address for you. It even reads the memory for
you, if it can.

Why does the instruction add 4? That's an artifact of the pipelining. By the time the processor has gotten around to
executing the instruction, the program counter has moved ahead two instructions. This also means that if you execute this
instruction in a branch delay slot, you're in for a nasty surprise, because it's going to use the branch destination as the
value of PC! (To avoid the nasty surprise, the SH-4 made this instruction outright illegal in a branch delay slot.)
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Although the SH-3 has a lot of addressing modes, none of them provides a significant reach; the furthest you can reach is
1KB. This is an unfortunate consequence of the 16-bit instruction size. There simply isn’t room in the instruction to put a
large displacement.

In practice, you spend a lot of time calculating offsets so you can use the indexed register indirect addressing mode. What
makes it even worse is that the indexed register indirect addressing mode must use r0 as a base register, which means that
the r0 register becomes a bottleneck because a lot of things need to pass through it.

Note also that there is no absolute addressing mode. The PC-relative addressing mode doesn’t have a large reach, so you
can’t use it to access variables in your data segment. Accessing global variables is typically done in two steps: First, load
the address of the global variable from a constants pool near your function, and then dereference that address to access
the global variable itself.

Okay, enough with the memory addressing modes. Next time, we’'ll look at the flags register.

Raymbnd Chen
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Only four of the bits in the status register are available to user-mode:

Bit Meaning Notes

M Modulus Used by division instructions

Q Quotient Used by division instructions

S Saturate Used by multiply-add instructions
T

Test Multi-purpose flag
(There was no official meaning for the names of the registers, so | made up mnemonics for them.)

Aside from the flags used by special-purpose instructions (multiplication and division), there is basically only one flag: T.
Each instructions decides how it wishes to consume and produce the T flag.

CLRT ;T=0
SETT ;T=1
CLRS ;S=0
SETS ;S=1

There are four instructions which directly set or clear two of the bits in the status register. We'll learn more about the M and
Q registers when we study integer division.

MOVT Rn ; Rn =T (0 or 1)

There is also a special instruction to copy the T flag into a register. There is no converse instruction, but we’ll see later how
we could try to synthesize one.

Windows CE requires that the S flag be clear at function entry and exit.
Since there wasn’t much to be said about flags, I'll use the rest of my time to cover various miscellaneous instructions.
MOVA @(disp, PC), ro ; re = PC + disp

The move address instruction calculates the effective address of @(disp, PC) and stores it into r0. The displacement can
be a multiple of 4 up to 255 x 4 = 1020.

SWAP.B Rm, Rn 5 Rn = Rm with bottom two bytes swapped
SWAP.W Rm, Rn ; Rn = Rm with top and bottom words swapped
XTRCT Rm, Rn ; Rn = (Rn << 16) | (Rm >> 16)

These instructions are for byte swapping or extracting the middle 32 bits of a 64-bit value.
PREF @Rn ; prefetch memory at Rn
The prefetch instruction has no effect if the memory at Rn is inaccessible.

TRAPA #imm ; trap to kernel mode
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The TRAPA instruction traps to kernel mode. It carries an 8-bit unsigned immediate payload which kernel mode can use to
signify anything it wishes.

NOP ; do nothing

Fortunately, the instruction 8000 is invalid, rather than being a nop.

STC GBR, Rn ; Rn = GBR
LDC Rn, GBR ; GBR = Rn
STC PR, Rn ; Rn = PR
LDC Rn, PR ; PR = Rn

These instructions let you move data into and out of the special registers gbr and pr. We saw gbr when we learned about
addressing modes. We'll learn about pr when we get to control transfer.

Well, that wasn’t very exciting yet. Let’s start doing math. Next time.

Raymbnd Chen
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Okay, we're ready to do some arithmetic. Due to the limited instruction encoding space, there isn’t room for any three-
operand instructions." All of the arithmetic instructions are two-operand, where the second source operand also acts as the

destination.
ADD Rm, Rn ; Rn += Rm , no effect on T
ADD #imm, Rn Rn += imm , no effect on T

ADDC Rm, Rn
ADDV Rm, Rn

Rn += Rm + T, T receives carry
Rn += Rm , T receives signed overflow

[

The ADD instructions add two values and put the result in the second register. You can add two registers together, or you
can add a signed 8-bit immediate to the destination register.

The ADDC instruction treats the T flag as a carry flag: It is added to the sum, and it receives the carry of the result.
The ADDV instruction treats the T flag as an overflow flag: It reports whether a signed overflow occurred.

Okay, subtraction is going to look really similar now.

SuB Rm, Rn ; Rn -= Rm , ho effect on T

SUB #imm, Rn 5 Rn -= imm , no effect on T

SUBC Rm, Rn ; Rn -= Rm + T, T receives borrow

SUBV Rm, Rn ; Rn -= Rm , T receives signed underflow

Basically the same as addition, except you're now subtracting. The SH-3 treats T as a borrow flag in the case of SUBC,
whereas for SUBV it reports whether a signed underflow occurred.

Arithmetic negation is up next.

NEG Rm, Rn ; Rn = -Rm , no effect on T
NEGC Rm, Rn ; Rn = -Rm - T, T receives borrow

There is no NEGV, but overflow occurs only if the value is 8x80000000, so | guess you could test for that value specifically.
There is a special instruction for for decrementing a register:
DT Rn 5 Rn=Rn -1, T = (Rn == 0)

The decrement and test instruction decrements a register and compares the result against zero. This is presumably for
counted loops.

Next come the comparison instructions.

CMP/EQ #imm, ro ; T = (re == signed 8-bit immediate)

CMP/EQ Rm, Rn 5 T = (Rn == Rm)

CMP/HS Rm, Rn 5 T = (Rn 2 Rm), unsigned comparison

CMP/GE Rm, Rn 5 T = (Rn 2 Rm), signed comparison

CMP/HI Rm, Rn 5 T = (Rn > Rm), unsigned comparison

CMP/GT Rm, Rn 5 T = (Rn > Rm), signed comparison

CMP/PZ Rn ; T=(Rn 2 0), signed comparison

CMP/PL Rn 5 T=(Rn > 0), signed comparison

CMP/STR Rm, Rn ; T =1 iff any corresponding bytes are equal
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These instructions set the T flag according to a particular comparison. Note that the comparison is backward! For example,
CMP/GE ri1, r2 does not check whether r1 = r2; rather, it checks whether r2 > r1. This takes a lot of getting used to.

You have the special ability to compare r0 for equality with a signed 8-bit immediate. Otherwise, you can compare two
registers against each other, or a register against zero.

The special CMP/STR compares two registers to determine whether any of the four component bytes are equal. It's clear
from the mnemonic that the intended purpose is to search for a null terminator in a string. You set Rn to zero and then do a
CMP/STR against every longword in the string until it says, “Hey, | found a zero byte!” and then you can study that longword
to see where the zero byte is.

The processor documentation doesn’t explain why they chose the names for the mnemonics, but | can guess.

Condition Meaning

EQ equal

HS high or same
GE greater or equal
HI high

GT greater than

Pz plus or zero

PL plus

STR string

It took me a while to come up with a plausible explanation for HS.
Exercise 1: Synthesize the SETT and CLRT instructions.

Exercise 2: Perform the opposite of the MOVT instruction: Set the T register to O if a register is zero, or 1 if the register is
nonzero.

The last arithmetic instructions are the extension instructions.

EXTS.B Rm, Rn ; sign extend byte in Rm to Rn
EXTS.W Rm, Rn sign extend word in Rm to Rn
EXTU.B Rm, Rn zero extend byte in Rm to Rn
EXTU.W Rm, Rn zero extend word in Rm to Rn

e e o

That's it for the basic arithmetic instructions. We’'ll start looking at the more complicated arithmetic instructions next time,
starting with multiplication.

" Well, okay, you can have three-operand instructions if some of them are hard-coded! But that's not what | mean. | mean
three-operand instructions where the programmer can choose all three of the operands.

Raymbnd Chen
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Last time, we looked at simple addition and subtraction. Now let’s look at multiplication.

Multiplication operations report their results in a pair of 32-bit registers called called MACH and MACL, which collectively
form a 64-bit virtual register known as MAC (multiply and accumulate).

We start with the simple multiplication operations.

MUL.L  Rm, Rn ; MACL
MULS.W Rm, Rn ; MACL
MULU.W Rm, Rn ; MACL

Rm * Rn, no effect on MACH
( intl6_t)Rm * ( intl6_t)Rn, no effect on MACH
(uint16_t)Rm * (uintl6_t)Rn, no effect on MACH

The .W operations treat the two source operands as 16-bit values, either signed or unsigned, and store the 32-bit result into
MACL. The MUL. L treats the source operands as full 32-bit values, and produces a 32-bit result in MACL. (It doesn’t matter
whether the sources are considered signed or unsigned because the lower 32 bits of the result are the same either way.)

The next instructions produce 64-bit results.

DMULS.L Rm, Rn ;5 MAC
DMULU.L Rm, Rn 5 MAC

Rn * Rm, signed 32x32-+64 multiply
Rn * Rm, unsigned 32x32-64 multiply

MAC.L  @Rm+, @Rn+ ; MAC += @Rm++ * @Rn++, signed 32x32-64 multiply
MAC.W  @Rm+, @Rn+ ; MAC += @Rm++ * @Rn++, signed 16x16-64 multiply

The MAC. x instructions are interesting in that they access two memory locations in one instruction. Both Rm and Rn are
treated as addresses, 16-bit or 32-bit values are loaded from those addresses, the loaded values are treated as signed
integers, multiplied together, and the result added to the 64-bit accumulator register MAC, and finally the registers are
incremented by the operand size. The design of the instruction is evidently for performing a dot product of two vectors.

There’s an additional wrinkle to the MAC. x instructions: If you set the S flag, then the operations use saturating addition
rather than wraparound addition. For MAC. L, the saturation is as a 48-bit value, and the value is sign-extended to a 64-bit
value in MAC. For MAC. W, the saturation is as a 32-bit value, and the bottom bit of MACH is set to 1 if an overflow occurred.

In practice, of these multiplication instructions, you will likely see only MUL. L in compiler-generated code.

Oh wait, how do you get the answers out of the MAC registers? Yeah, there are instructions for that too.

CLRMAC ; MAC = @

LDS Rm, MACH ; MACH = Rm
LDS Rm, MACL ; MACL = Rm
LDS.L  @Rm+, MACH ; MACH = @Rm+
LDS.L  @Rm+, MACL ; MACL = @Rm+
STS MACH, Rn ; Rn = MACH
SsTS MACL, Rn ; Rn = MACL
STS.L  MACH, @-Rn ; @-Rn = MACH
STS.L  MACL, @-Rn ; @-Rn = MACL

The CLRMAC instruction sets MAC to zero, which is a good starting point for subsequent MAC. x instructions.

The LDS instructions move values into the MAC registers. You can move a value directly from a register or load it (with post-
increment) from memory. Conversely, the STS instructions move values out of the MAC registers, either into a general-
purpose register or into memory.
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Next up is integer division, which is going to be interesting.
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The SH-3 does not have a simple “divide two integers please” instruction. Rather, it has a collection of instructions that let
you build a division operation yourself.

DIVeu ; prepare for unsigned division
DIVeS  Rm, Rn ; prepare for signed division Rn + Rm
DIVl Rm, Rn ; generate 1 bit of the quotient Rn + Rm

To begin an integer division operation, you execute either a DIVOU or DIV@S instruction, depending on whether you want a
signed or unsigned division.

You then perform a number of DIV1 instructions equal to the number of bits of quotient you need, mixed in with other
instructions are outlined in the programmer’s manual. After running the desired number of iterations, the result is in either
the Rn register or in the register you accumulated the results into, depending on the specific algorithm you used.

These instructions do not attempt to handle division by zero or division overflow. They will simply generate nonsense
results. If preventing division by zero or overflow is important to you, you will have to check for them yourself explicitly.

I’'m not going to go into the fine details of how these instructions operate. They use Rm and Rn to record the state of the
division, with three additional bits of state recorded in the M, Q, and T flags.

It's basically magic.

In practice, you won’t see the compiler generate these instructions anyway. Instead, the compiler is going to do one of the
following:

« If dividing by a constant power of 2, use a shift instruction.
« If dividing by a small constant, multiply by 2%2+n and extract the high 32 bits of the result.
+ Otherwise, call a helper function in the runtime library.

Phew, that was crazy.
Next time, we’ll return to the relative sanity of bitwise logical operations.

Bonus chatter: If you want to see how one compiler implements division on the SH-3 (and if you are okay with being
exposed to GPL source code), you can take a look at how GCC implements division in its runtime library.
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The SH-3 has a rather basic collection of bitwise logical operations.

AND Rm, Rn ; Rn &= Rm
AND #imm, ro ; ro &= unsigned 8-bit immediate
OR Rm, Rn ; Rn |= Rm
OR #imm, ro ; r@ |= unsigned 8-bit immediate
XOR Rm, Rn ; Rn 2= Rm
XOR #imm, ro ; r@ "= unsigned 8-bit immediate

NOT Rm, Rn ; Rn = ~Rm

Nothing fancy. No nor or nand or andnot or other goofy bitwise operations. Just plain vanilla stuff. Do note that the 8-bit
immediate is unsigned here.

There is also an instruction for testing bits wthout modifying anything other than the T flag.

TST Rm, Rn 3 T

5 ((Rn & Rm) == 0)
TST #imm, re ;T

((re & signed 8-bit immediate) == 0)

The test instruction performs a bitwise and and compares the result with zero. In this case, the 8-bit immediate is signed.

But wait, there’s something goofy after all: Load/modify/store instructions!

AND.B #imm, @(r@, GBR)
OR.B #imm, @(r@, GBR)
XOR.B #imm, @(r@, GBR)
TST.B #imm, @(r®, GBR)

@(re + gbr) &= 8-bit immediate
@(re + gbr) |= 8-bit immediate
@(re + gbr) ~= 8-bit immediate
T = ((@(r@ + gbr) & 8-bit immediate) == 0)

e ve we ue

These .B versions of the bitwise logical operations operate on a byte in memory indexed by the rO and gbr registers. Okay,
so TST.B is not a load/modify/store; it's just a load, but | included it in this group because he wants to be with his friends.

In practice, the Microsoft compiler does not generate these instructions.

Finally, we have this guy, the only truly atomic instruction in the SH-3 instruction set.
TAS.B @Rn ; T = (@Rn == @), @Rn |= Ox80

The test-and-set instruction reads a byte from memory, compares it against zero (setting T accordingly), and then sets the
high bit and writes the result back out. This was clearly designed for building low-level synchronization primitives, but I'm
not sure anybody actually uses it.

| say that it is the only truly atomic operation because it holds the data bus locked for the duration of its operation. The
load/modify/store instructions we saw above do not lock the bus, so it's possible for a coprocessor to modify the memory
out from under the SH-3.

That's it for the logical operations. Next up are the bit shifting_ operations.

https://devblogs.microsoft.com/oldnewthing/20190813-00/?p=102780 12


https://devblogs.microsoft.com/oldnewthing/20190814-00/?p=102782

08/02/2024 14:58 The SuperH-3, part 7: Bitwise logical operations - The Old New Thing

Raym'o‘nd Chen
Follow X © N

https://devblogs.microsoft.com/oldnewthing/20190813-00/?p=102780 2/2


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing
https://twitter.com/ChenCravat
https://twitter.com/ChenCravat
https://github.com/oldnewthing/
https://github.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing/feed/

08/02/2024 14:58 The SuperH-3, part 8: Bit shifting - The Old New Thing

The SuperH-3, part 8: Bit shifting
Raymond Chen
August 14th, 2019

The bit shifting operations are fairly straightforward.

; arithmetic (signed) shifts
SHAL Rn s Rn<=1, T
SHAR Rn ; Rn>>=1, T

the bit shifted out
the bit shifted out

; logical (unsigned) shifts

SHLL Rn ; Rn <<= 1, T = the bit shifted out
SHLR Rn ; Rn >>= 1, T = the bit shifted out
SHLL2 Rn ; Rn <<= 2
SHLR2 Rn ; Rn >>= 2
SHLL8 Rn ; Rn <<= 8
SHLR8 Rn ; Rn >>=8
SHLL16 Rn ; Rn <<= 16
SHLR16 Rn ; Rn >>= 16

You cannot shift by arbitrary constant amounts. Only certain fixed values are permitted. If you want to shift left by, say, 9,
you'll have to construct it from a SHLL8 and a SHLL.

Note also that SHAL and SHLL are functionally equivalent. But they have different encodings, so the designers burned an
opcode for a redundant operation.

There are no “large shift” options for right shifts. You can perform multiple one-bit shifts, or use a variable shift:

SHAD Rm, Rn ; if Rm > @: Rn <<= (31 & Rm)

;5 if Rm = @: nop

; if Rm < @: Rn >>= (31 & -Rm), signed
SHLD Rm, Rn ; if Rm > @: Rn <<= (31 & Rm)

; if Rm = @: nop

5 if Rm < @: Rn >>= (31 & -Rm), unsigned

Note that these shift instructions shift both left and right, depending on the sign of the shift amount. If you want to shift right
by an amount in a register, you therefore need to negate the value, and then shift left.

Finally, we have rotation.

ROTL Rn ; rotate left, T contains carried-out bit
ROTR Rn ; rotate right, T contains carried-out bit
ROTCL Rn ; 33-bit rotate through T
ROTCR Rn ; 33-bit rotate through T

The rotation instructions rotate either a 32-bit or 33-bit value by one position. For the 32-bit rotations, the bit that rotated off
the end is copied to T. For the 33-bit rotations, the T flag acts as the 33rd bit.

We saw earlier that there is no NEGV instruction. To detect overflow from a negation, you just have to check for the value
0x80000000 directly. Here’s the shortest sequence | could come up with:

; branch if Rn equals ©x80000000

rotl Rn ; rotate left one bit

dt Rn ; decrement and test for zero
bt underflow ; Y: underflow occurred

The result of the DT is zero if the previous value was 1, and the previous value was 1 if the original value was 0x80000000.
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This is a destructive operation, so do it in a scratch register. You should have one available, since it’s the source register for
the NEGV you were checking.

We'll look more at constants next time.
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Loading constants on the SH-3 is a bit of a pain. We saw that the MOV instruction supports an 8-bit signed immediate, but
what if you need to load something outside that range?

The assembler allows you to write this:

MoV

#value, Rn ; load constant into Rn

If the value fits in an 8-bit signed immediate, then it uses that. Otherwise, it chooses a PC-relative MOV.W or MOV. L
depending on the size of the value, and it generates the constant into the code at a point it believes that the code is

unreachable, such as two instructions after a bra or rts. If no such point can be found, the assembler raises an error. You

can use the .nopool directive to prevent constants from being generated at a particular point, or . pool to force them to be

generated.

If the compiler can generate the constant in two instructions, typically by combining an immediate with a shift, then the

compiler will tend to prefer the two-instruction version instead of using a constants pool, especially if it can put the second

half of the calculation into an otherwise-wasted branch delay slot. (Yes, we haven't learned about branch delay slots yet. Be

patient.)

; for
MoV
SHLL

; for
MoV
SHLL2

; for
MoV
SHLL8

; for
MoV

-256 < value < 256, multiples of 2
#value / 2, Rn
Rn

-512 < value < 512, multiples of 4
#value / 4, Rn
Rn

-65536 < value < 65536, multiples of 256
#value / 256, Rn
Rn

-16777216 < value < 16777216, multiples of 65536
#value / 65536, Rn

SHLL16 Rn

Other instructions that could be useful for building constants are logical right shift and rotate. I'm not going to write them

out, though.

Use your imagination.

Now, it may seem cumbersome to have to use two instructions to generate a constant, but remember that these

instructions are only 16 bits in size, so you can fit two of them in the space of a single MIPS, PowerPC, or Alpha AXP

instruction. And if you can schedule the instructions properly, the fact that the SH-3 is dual-issue means that each of the

instructions executes in a half-cycle, so the pair of them takes a single cycle, assuming you can schedule another

instruction between them.

Next up are the control transfer instructions, and the return of the confusing branch delay slot, but the SH-3 adds more

wrinkles to make them even more confusing.
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Yes, we have once again reached the point where we have to talk about branch delay slots. | will defer to the background
information | provided when the issue arose in the discussion of the MIPS R4000. Basically, the branch delay slot is an
instruction that occurs in the instruction stream after a branch. That instruction executes even when the branch is taken. (Of
course, if the branch is not taken, the instruction executes normally as well.)

On the SH-3, the single-instruction branch delay slot is not sufficient to cover for the pipeline bubble created by a branch.
Due to the pipeline structure, two instructions have already been fetched by the time the processor determines whether the
branch is taken. The first such instruction goes into the branch delay slot, and the second one is converted to a nop. So
even if you fill the branch delay slot, you still get a one-cycle stall for the discarded instruction. Therefore, you should prefer
to structure branches so that they are normally not taken.

Okay, here we go.

BT label ; branch i

f T=1, reach is 256 bytes, squash the delay slot
BT/S label ; branch if 1

, reach is 256 bytes

BF label ; branch i

f T=0, reach is 256 bytes, squash the delay slot
BF/S label ; branch if T=0

, reach is 256 bytes

The branch if true and branch if false test the T flag and branch if it is set (true) or clear (false). This particular branch is
interesting because you get to choose whether you want the instruction in the delay slot to execute. Note that you already
paid for the delay slot, so choosing not to execute it doesn’t make things run any faster. The processor just converts the
instruction to a nop and you waste a cycle.’

BRA label ; branch always, reach is 4KB

BRAF Rn ; branch to PC + Rn + 4

JMP @Rn ; branch to Rn

BSR label ; branch always, reach is 4KB, PR = return address
BSRF Rn ; branch to PC + Rn + 4, PR = return address

JSR @Rn ; branch to Rn, PR = return address

RTS ; branch to PR

These instructions perform unconditional branches, either to a specific address within 4KB (branch always), to an address
relative to the current program counter (branch always far), or to an address provided by a register (jump). The xSR
instructions branch to a subroutine and record the return address in the special pr register. And of course after you branch
to a subroutine, you need a way to get back, hence RTS return from subroutine.

The extra +4 in the BRAF and BSRF are due to pipelining. By the time the processor determines that the branch needs to be
taken, the program counter has already moved ahead two instructions.

The Microsoft compiler doesn’t use the BSR instruction because the linker is very likely to put the branch target outside the
4KB reach of the BSR instruction.

The Microsoft compiler uses the BRAF instruction in just one specific scenario (which we’ll look at later), and it doesn'’t
appear to use BSRF at all. The BRAF and BSRF instructions appear to be useful for writing position-independent code.

Watch out: Even though the JMP and JSR instructions use an @, there is no memory access going on. | don’t know why the
mnemonic uses an @.
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Note that the BT and BF instructions have a very limited reach. If you need to branch further, you'll have to use a trick like
branching to a branch, or reversing the sense of the test to jump over a branch instruction with greater reach.

; BT toofar

; option 1: branch to a branch (trampoline)

BT trampoline
trampoline:
BRA toofar+2

delay_slot_instruction ; move first instruction of toofar here

; option 2: reverse the sense and jump over a branch

BF skip

BRA toofar+2

delay_slot_instruction ; move first instruction of toofar here
skip:

The SH-3 deals with branch delay slots slightly differently from the MIPS R4000. The SH-3 temporarily disables interrupts
between the branch instruction and its delay slot, so you cannot get interrupted in the branch delay slot.

If an exception occurs on the instruction in the branch delay slot, the exception is raised, and assuming the kernel fixes the
problem, execution resumes at the branch instruction. This is safe because the branch instructions are all restartable; the
only register modification is to pr, but none of the xSR instructions consume pr, so it's okay to re-execute them; you just set
prtwice to the same value.

Some instructions are disallowed in a branch delay slot.

« Another branch instruction. Because duh.

« A TRAPA instruction. Sorry, no system calls in a branch delay slot. If you want to make a system call and return, you'll
have to code the system call before the RTS and drop a nop into the branch delay slot.

« An instruction that uses PC-relative addressing. Because the program counter has already moved to the branch
target, so your PC-relative address isn’t what you think it is.

The last case is subtle. It means that the branch delay slot cannot contain a load of a value from a PC-relative address, nor
can you use MOVA to load the address of a PC-relative value. If you need to pass a large constant as a parameter to a
function, you'll have to do it ahead of the JSR and find something else to put in the delay slot.

If you put a disallowed instruction in a branch delay slot, the processor will raise an illegal slot instruction exception.

When it comes time to return from a subroutine, you often have two choices. You can use the RTS instruction or an
equivalent JMP @:

Allowed Not allowed

lds.1 @r15+, pr mov.l @rl5+, ril
rts jmp @rl

Both sequences are equivalent: They transfer control to the address popped off the stack. They just use a different register
to do it. However, Windows requires that you use the first sequence. This is necessary so that function unwinding can be
performed by the kernel in the case of an exception.

It's probably in your best interest to use the first version anyway, because it will work well with the return address predictor,
should the SuperH ever gain one.

Next time we’ll look at atomic operations, more specifically the lack of them.

" Technically, you are wasting another cycle, because a taken branch already suffers a loss of one cycle for the discarded
second prefetched instruction. You're increasing the taken-branch cost from one cycle to two.

Raymond Chen
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The SH-3 has a very limited number of read-modify-write operations. To recap:

AND.B #imm, @(r@, GBR)
OR.B #imm, @(r@, GBR)
XOR.B #imm, @(r@, GBR)
TAS.B @Rn

@(re + gbr) &= 8-bit immediate
@(re + gbr) |= 8-bit immediate
@(re + gbr) ~= 8-bit immediate
T = (@Rn == 8), @Rn |= Ox80

e e e wl

These instructions are “atomic” in the sense that they occur within a single instruction and are hence non-interruptible.
Technically, only the last one is truly atomic in the sense that the processor holds the data bus locked for the duration of the
instruction.

Let’s not quibble about such details. Let’s just say we’re looking for non-interruptible instructions.

The SH-3 does not support symmetric multiprocessing, so we don’t have to worry about competing accesses from other
main processors (although there may be competing accesses from coprocessors or hardware devices). But how are we
going to build atomic increment, decrement, and exchange out of these guys?

Let’s be honest. We can't.
We'll have to fake it.

Windows CE takes a different approach from how Windows 98 created atomic operations on a processor that didn’t support
them.

On Windows CE, the kernel is in cahoots with the implementations of the interlocked operations. If it discovers that it
interrupted a special uninterruptible sequence, it resets the program counter back to the start of the uninterruptible
sequence before allowing user mode to resume." In this way, the kernel manufactures multi-instruction uninterruptible
sequences.

These sequences have to be carefully written so that they are restartable. This means that they cannot mutate any input
parameters, and there are no memory updates until the final instruction in the sequence.

For example, we could try to implement our fake InterlockedIncrement like this:

; on entry:

; r4 = address to increment
; on exit:

H re = incremented value

InterlockedIncrement:

mov.l @r4, roe ; load current value ;5 (1)
add #1, ro ; increment it 5 (2)
mov.1l re, @ra ; store updated value ;5 (3)
rts ; return 5 (4)

We load the current value from memory, add 1, store it back, and return. If this sequence is interrupt at any point, the kernel
moves the program counter back to the first instruction and restarts the entire operation.

Let’s walk through the possible interrupts.

« If interrupted prior to the first instruction, then moving the program counter back to the first instruction has no effect
because that’s where it already was. So no problems there.
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« If interrupted prior to the second instruction, then we will perform the mov.1 @r4, re a second time. Since we haven'’t
changed r4, this will read the desired memory location. It's a redundant read, but at least it's not harmful.

« If interrupted prior to the third instruction, then we will reload and re-increment the existing value. Again, since we
haven’t changed r4, this will read the correct location.

« If interrupted prior to the fourth instruction, then we’re in trouble. We have already written the updated value back to
memory, and restarting the operation will increment it a second time! This code is broken.

Aha, but we forgot about the branch delay slot of the rts instruction, and in fact it's the branch delay slot that provides our
escape hatch: Move the final store into the branch delay slot.

on entry:

)

H r4 = address to increment

; on exit:

H re = incremented value

InterlockedIncrement:
mov.l  @r4, re ; load current value ;5 (1)
add #1, ro ; increment it 5 (2)
rts ; return ;5 (3)

) )

mov.1l ro, @rd store updated value

(4)
Okay, let’s run our analysis again.

o If interrupted prior to the first instruction, our analysis from above is still correct.

o If interrupted prior to the second instruction, our analysis from above is still correct.

o If interrupted prior to the third instruction, our analysis from above is still correct.

« An interrupt between the third and fourth instruction is not possible because the processor disables interrupts
between a delayed branch instruction and its delay slot. But if an exception occurred (say, because the memory was
copy-on-write), we can safely restart the operation because we haven’'t modified r4 or the value in memory at r4.2

o If interrupted after the fourth instruction, then the program counter isn’t in our special code region, so the kernel won'’t
restart the sequence.

The branch delay slot saved us!
You never thought you'd see the day when you’d be thankful for a branch delay slot.

The kernel puts these special uninterruptible sequences in a contiguous region of memory. Let’s say that it starts each
special uninterruptible sequence on a 16-byte boundary. This means that the “special uninterruptible sequence detector”
can go something like this:

mov.l  @(usermode_pc), re see where we're returning to

..

mov.l  #start_of_sequences, ril ; the start of our special sequences
mov #length_of_sequences, r2 ; the size in bytes
sub rl, ro

cmp/hs  ro, r2 is it in the magic region?
bf fixme ; Y: then go fix it
return_to_user_mode:
. continue as usual ...

..

fixme:
mov #-15, r2 mask out the bottom 4 bits
and r2, ro ; to go back to start of special sequence

[

add ri, ro ; convert from offset back to address
bra return_to_user_mode
mov.l ro, @(usermode_pc) ; update user mode program counter

This is not actually how it goes, but it gives you the basic idea. In reality, the special uninterruptible sequences start on 8-
byte boundaries, in order to pack them more tightly. Sequences that are longer than 4 instructions need to be arranged so
that every 8 bytes is a valid restart point. | just used 16-byte sequences to make the explanation simpler.

For example, InterlockedCompareExchange really went like this:
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on entry:
r4 = address of value to test
r5 replacement value (if current value matches expected value)
ré = expected value

; on exit:

re = previous value

>
>
>
>
>
>

InterlockedCompareExchange:

mov.l @r4, roe ; load current value

cmp/eq ro, ré ; is it the expected value?

bf nope ; Nope, just return current value

mov.1l r5, @r4 ; Store the replacement value
nope:

rts

nop

There is a second restart point after four instructions, at the rts, and it's okay to restart there because the operation is
complete. All we're doing is returning to our caller.

This trick for creating restartable multi-instruction sequences was not unique to the SH-3. Windows CE employed it to
synthesize pseudo-atomic operations for other processors, too.

One curious side effect of this design for restartable multi-instruction sequences is that you can’t debug them! If you try to
single-step through these multi-instruction sequences, you'll get stuck on the first instruction: The breakpoint will fire, and
the kernel will reset the program counter back to the first instruction.

Next time, we'll look at the Windows CE calling_convention.

Bonus chatter: The SH-4A processor added load-locked and store-conditional instructions, bringing it in line with other
RISC processors.

MOVLI.L @Rm,re ; Load from @Rm, remember lock
MOVCO.L re,@Rn ; Store to @Rn provided lock is still valid
; T =1 if store succeeded, 0 if failed

Bonus chatter 2: WWhat about the TEB? Where does Windows keep per-thread information?

Turn out this is easier than it sounds. The SH-3 doesn’t support symmetric multiprocessing, so there is only one processor,
which therefore can be executing only one thread at a time. A pointer to the per-thread information is stored at a fixed
location, and that pointer is updated at each thread switch.

' Fast Mutual Exclusion for Uniprocessors. Brian Bershad, David Redell, and John Ellis, Proceedings of the fifth
international conference on Architectural support for programming languages and operating systems, 1992.

2 Suppose an exception occurs in the delay slot because the memory isn’t writable, and the exception handler fixes the
problem (by making the memory writable on demand). Resuming execution will rewind the instruction pointer back to the
start of the sequence because the memory value may have changed as part of handling the exception.

Raymbnd Chen
Follow X © 2N

https://devblogs.microsoft.com/oldnewthing/20190819-00/?p=102790 3/3


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing
https://twitter.com/ChenCravat
https://twitter.com/ChenCravat
https://github.com/oldnewthing/
https://github.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/20190820-00/?p=102792
http://discolab.rutgers.edu/classes/cs519/papers/fast-mutex.pdf
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing/feed/

08/02/2024 14:59 The SuperH-3, part 12: Calling convention and function prologues/epilogues - The Old New Thing

The SuperH-3, part 12: Calling convention and function
prologues/epilogues

Raymond Chen

August 20th, 2019

The calling convention used by Windows CE for the SH-3 processor looks very much like the calling convention for other
RISC architectures on Windows.

The short version is that the first four parameters (assuming they are all 32-bit integers) are passed in registers r4 through
r7, and the rest go onto the stack after a 16-byte gap. The 16-byte gap is the home space for the register parameters, and
even if a function accepts fewer than four parameters, you must still provide a full 16 bytes of home space.

More strictly, the first 16 bytes of parameters are passed in registers r4 through r7. If a parameter is a floating point type,
then how it gets passed depends on how the parameter is declared in the function prototype.

« If the floating point type is prototyped as non-variadic, then it goes into the corresponding register fr4 through fr7, and
the integer register goes unused.

« If the floating point type is prototyped as variadic, then it stays in the integer register.

« If the function has no prototype, then the floating point type goes into both the floating point register and the integer
register.

The reason for this rule is the same as before. Variadic parameters go into integer registers because the callee doesn’t
know what type they are upon function entry. To make things easier, variadic parameters are always passed in integer
registers, so that the callee can just spill them into the home space and treat them all as stack-based parameters. And
unprototyped functions pass the floating point values in both floating point and integer registers because it doesn’t know
whether the function is going to treat them as variadic or non-variadic, so it has to cover both bases.

Unlike the Windows calling_convention for the MIPS R4000, the Windows calling convention for the SH-3 does not require
64-bit values to be 8-byte aligned. For example:

void f(int a, __int64 b, int c);

MIPS |Contents| |SH-3| Contents
a0 a r4 a
at unused r5
b
a2 ré
b
a3 r7 c
on stack c

On entry to the function, the return address is provided in the pr register, and on exit the function’s return value is placed in
the r0 register. However, if the function’s return value is larger than 32 bits, then a secret first parameter is passed which is
a pointer to a buffer to receive the return value. The parameters are caller-clean; the function must return with the stack
pointer at the same value it had when control entered.

If the concept of home space offends you, you can think of it as a 16-byte red zone that sits above the stack pointer.

The stack for a typical function looks like this:
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param 6 (if function accepts more than 4 parameters)

param 5 (if function accepts more than 4 parameters)

param 4 home space

param 3 home space

param 2 home space

param 1 home space | < stack pointer at function entry

saved registers

saved return address | < stack pointer after saving registers

local variables

outbound parameters
beyond 4 (if any)

param 4 home space

param 3 home space

param 2 home space

param 1 home space | < stack pointer after prologue complete

The function typically starts by pushing onto the stack any nonvolatile registers, as well as its return address. This takes
advantage of the pre-decrement addressing mode. In practice, the Microsoft C compiler allocates nonvolatile registers
starting at r8 and increasing, and preserves them on the stack in that order, followed by the return address.

In this example, the function has four registers to save, plus the return address.

function_start:
MOV.L  r8, @-rl5 ; push r8
MOV.L  r9, @-rl5 ; push r9
MOV.L rl9, @-rl5 ; push rie
MOV.L ril, @-rl5 ; push ril
STS.L  pr, @-ri5 5 push pr

At some point (perhaps not immediately), the function will adjust its stack pointer to create space for its local variables and
outbound parameters. If the function has a small stack frame, it can use the immediate form of the SUB instruction.
Otherwise, it's probably going to load a constant into a register and use that as the input to the two-register form of the SUB
instruction.

If the function has a large stack frame, it will be difficult to access variables far away from r75 due to the limited reach of the
register indirect with displacement addressing mode. To help with this problem, the compiler might park the frame pointer
register r14 in the middle of the frame, or at least close to a frequently-used variable, so that it can reach more local
variables in a single instruction.

At the exit of the function, the operations performed in the prologue are reversed: The stack pointer is adjusted to point to
the saved return address, and the saved registers are popped off the stack. Finally, the function returns with a rts.

LDS.L  @rl5+, pr ; pop pr

MOV.L  @rl5+, rlil ; pop rili

MOV.L  @rl5+, rl® ; pop rile

MOV.L  @rl5+, r9 ; pop r9

RTS ; return
5

MOV.L  @rl5+, r8 pop r8 (in the delay slot)

Lightweight leaf functions are those which call no other functions and which can accomplish their task using only volatile
registers and the 16 bytes of home space. Such functions may not modify the pr register or any nonvolatile registers (which
includes the stack pointer).

Next time, we’ll look at some code patterns you'll see in the compiler-generated code, y’know, the stuff that goes inside the
function. We'll start with misaligned data.
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When going through compiler-generated assembly language, there are some patterns you'll see over and over again. Note
that the code you see may not look exactly like this due to compiler instruction scheduling. In particular, the sequences for
misaligned memory access may bring additional registers into play in order to avoid register dependencies.

First, is the unsigned memory access. Bytes and words loaded from memory are sign-extended by default. If you want to
load an unsigned value, you need to perform an explicit zero-extension.

; load unsigned byte from address in re
MOV.B  @ro, ril ; loads sign-extended byte
EXTU.B ri1, ril ; zero-extend the byte to a longword

; load unsigned word from address in re
MOV.W  @re, ri ; loads sign-extended word
EXTU.W ri1, ri1 ; zero-extend the word to a longword

Next up is misaligned data. The SH-3 does not support unaligned memory access. Not only that, but the kernel doesn’t
even emulate unaligned memory access. If you access memory from a misaligned address, you take an access violation
and your process crashes. So don’t mess up!

There are no special instructions for accessing misaligned data. You are on your own to take individual bytes and combine
them into the desired final value, or to take the starting value and decompose it into bytes.
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; store 16-bit value in rl to possibly unal
; destroys ri

5 ri @ro

5 XXXXAABB XX XX
MOV.B rl, @re ; XXXXAABB BB xx
SHLR8 rl ; @OXxxxAA BB xx

MOV.B  ri1, @(1, re) ; @OXXXXAA BB AA

; store 32-bit value in rl1 to possibly unal
; destroys ril
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igned address in ro

igned address in re

; ri @ro

K AABBCCDD XX XX XX XX
MOV.B rli, @re ; AABBCCDD DD xXx XX XX
SHLR8 ri ; O@OAABBCC DD XX XX XX
MOV.B ri, @(1, ro) ; @OAABBCC DD CC xx XX
SHLR8 rl ; GOOOAABB DD CC xx XX

MOV.B r5, @(2, ro) ; ©0OOAABB DD CC B
SHLR8 rl ; GOBORRAA DD CC B
MOV.B ri, @(3, ro) ; ©000BOAA DD CC B

; read 16-bit value from possibly unaligned
5 rl r2
H XXXXXXXX  XXXXXXX

B xx
B xx
B AA

address in re
@roe
X BB AA

H
MOV.B  @(1, re), ri 5 SSSSSSAA  XXXXXXXX

SHLL8 rl ; SSSSAABGO  XXXXXXX:
MOV.B  @ro, r2 ; SSSSAARGO SSSSSSB
EXTU.B r2, r2 ; SSSSAAQGO ©00000B
OR rl, r2 ; SSSSAARO SSSSAAB

; r2 contains signe
EXTU.W r2, r2 ; SSSSAAQO 0Q00OAAB

; r2 contains unsig

; read 32-bit value from possibly unaligned
5 rl r2
H XXXXXXXX  XXXXXXX

X
B

B

B

d 16-bit value

B

ned 16-bit value

address in re
@roe
x DD CC BB AA

H
MOV.B  @(3, re), ri 5 SSSSSSAA  XXXXXXXX

SHLL8 rl ; SSSSAABGO  XXXXXXX:
MOV.B  @(2, re), r2 ; SSSSAAGO SSSSSSB
EXTU.B r2, r2 ; SSSSAAGO ©00000B
OR r2, ri ; SSSSAABB 000000B
SHLL8 rl ; SSAABBOO ©00000B
MOV.B  @(1, re), r2 ; SSAABBOO SSSSSSC
EXTU.B r2, r2 ; SSAABBOO ©00000C
OR r2, rl ; SSAABBCC ©00000C
SHLL8 rl ; AABBCCOO ©000000C
MOV.B  @ro@, r2 ; AABBCCOO SSSSSSD
EXTU.B r2, r2 ; AABBCCOO ©000000D
OR rl, r2 ; AABBCCOO AABBCCD

Less often, you will see code that sign-extends a 32-

; sign-extend 32-bit value in r@ to 64-bit

MoV re, ri ; copy value to ri
SHLL ri ; T contains high b
SUBC ri, ri ; if T=0, then rl =

; if T=1, then ri1 =

If you happen to have the value 0 lying around in a register, you could accomplish the task in two instructions:

; sign-extend 32-bit value in r@ to 64-bit

; assumes that r2 already contains the valu
CMP/GT ro, r2 ; T=1(0>r0)
; in other words, T
H T
SUBC rl, ril ; if T=0, then ri1 =

; if T=1, then r1 =

X
B
B
B
B
C
C
C
C
D
D
D

bit value to a 64-bit value.

value in ri:re

it of value
00000000
FFFFFFFF

value in ril:re
e zero

=0 if ro is positive or zero
=1 if r@ is negative
00000000

FFFFFFFF

That is just code golf on my part. | haven’t seen the compiler use this trick, or the next one.

; sign-extend 32-bit value in ro@ to 64-bit
; preserves flags

ROTCL re ; rotate ro left, c
; and saving old T
SUBC ri, ri ; if T=0, then rl =
; if T=1, then ri1 =
ROTCR ro ; rotate ro right t

; and recover origi
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value in ri1:re

opying high bit into T

in low bit of re
00000000, T stays ©
FFFFFFFF, T stays 1

o restore original value

nal value of T
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In general, you'll see that SH-3 assembly code is somewhat verbose, even more so because compiler technology back in
this time period was not as advanced as it is today, but you have to realize that each of these instructions is only half the
size of the instructions of its RISC-style contemporaries, so even though you plowed through 2000 instructions, that’s only
4KB of code.

Okay, next time, we’re returning to reality and looking_at function call patterns.

Raymbnd Chen
Follow X © N
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Function calls on the SH-3 are rather cumbersome. The BSR instruction has a reach of only 4KB, which makes it impractical

for compiler-generated code because the compiler doesn’t know where the linker is going to put the function it's calling. In
practice, all function calls in compiler-generated code are performed with the JSR instruction, which calls a function whose
address is given by a register.

The typical case of a direct function call goes like this:

MOV.L r3, @(16, ris) parameter 5 passed on the stack

E
MoV rg8, r7 ; parameter 4 copied from another register
MOV #20, ré6 ; parameter 3 is address of local variable
ADD rl5, ré6 ; ré = rl5 + 20
MoV #8, r5 ; parameter 2 is calculated in place
MOV.L  #function, re ; re = function to call
JSR @ro ; call the function
MOV @(24,r15), r4 ; parameter 1 copied from the stack
Pl

(in the branch delay slot)

We load the function address into some register. The compiler usually uses one of the non-parameter scratch registers for
this purpose, r0 through r3. Note that we wrote this as a 32-bit immediate, but that is a pseudo-instruction which the
assembler converts to a PC-relative load, with a constant embedded in the code segment.

; You write
MOV.L  #function_address, roe ; re = function to call

; Assembler produces
MOV.L  @(n, PC), ro ; re = function to call

. around n+4 bytes later ...
.data.l function_address ; constant stored in code segment

The notation used by the Microsoft SH-3 assembler is that the name of a label is treated as its address. You don’t need to
say offset like you do in the Microsoft 80386 assembler.

We also prepare the parameters for the call. As we noted when we discussed the calling convention, the first four
parameters go in registers r4 through r7, and the rest go on the stack.

In practice, the parameters will be prepared in whatever order the compiler finds convenient, and they will be interleaved
with the code that prepares the function address (and with each other) in order to improve scheduling.

The final instruction for setting up the parameters can go into the branch delay slot, provided it does not use a PC-relative
addressing mode.

re = function to call

r5 = local variable

call the function

r4 = some large constant
(in the branch delay slot)

MOV.L  #function, re

MOV.L  @(24, ri5), r5

ISR @re

MOV.L  #large_constant, r4
ANAAN TLLSLOT EXCEPTION

e e Ge we wl

The MOV.L #large_constant, r4 will be encoded by the assembler as a PC-relative load, which is illegal in a branch
delay slot. Fortunately, the assembler will not let you do this:

error A151: Can't compute PC displacement in a delay slot

https://devblogs.microsoft.com/oldnewthing/20190822-00/?p=102796
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To fix this, you'll have to move the PC-relative load out of the delay slot, preferably by swapping it with some instruction that
it is not dependent upon.

MOV.L  #function, re ; r@ = function to call
MOV.L  #large_constant, r4 ; r4 = some large constant
JSR @ro ; call the function

MOV.L  @(24, ri15), r5 ; r5 = local variable

5 (in the branch delay slot)

Calling a function through a global variable function pointer (such as through the import address table, in the case of a
function that was declared as __declspec(import)) involves two memory accesses, one to get the address of the global
variable, and another to get the code pointer.

MOV.L  #variable, ro ; re = variable that holds the fptr
MOV.L @re, ro ; r@ = the address to call
JSR @ro ; call it

Here and in the subsequent examples, I've removed the parameter-loading instructions.

Calling a virtual function means getting the function address from the object’s vtable.

MoV r8, r4 ; r4 = "this" for function call

MOV.L @r4, ro ; load vtable pointer into re

MOV.L  @(n, re), ro ; load function pointer from vtable into re
JSR @ro ; call it

And calling a naively-imported function means calling a stub.

MOV.L  #stub_address, re ; re = pointer to stub function
JSR @ro ; call it
stub:
MOV.L #__imp__ Function, re ; re = pointer to IAT entry
MOV.L @re, ro ; r@ = the address to call
JMP @ro ; and jump there
NOP ; (branch delay slot)
.data.l __imp_ Function ; address of IAT entry

; (constant for first MOV.L instruction)
Our last common pattern for today is the dense switch statement.

switch (value) {

case 1:
case 2:
case 3:
case 4:
case 5: ...
default: ...
}
ADD #-1,r4 ; bias by lowest valid value
MoV #4,r3 ; 1s it in the range of our jump table?
CMP/HI r3,r4
BT default ; N: go to default case
MOV.L  #jump_table, r2 ; get address of jump table
MoV r4,reo ; prepare for indexed addressing
MOV.B  @(ro,r2),re ; re = instruction offset for case
NOP ; (we'll see more about this nop later)
BRAF re ; jump to appropriate handler
NOP ; (nothing in the branch delay slot)
jump_table:
.data.b oxe
.data.b oxla
.data.b @x2c
.data.b ox42
.data.b o0x78

The code first subtracts the lowest non-default case value, producing an index so that all the interesting cases are in the
range 0 to n for some n. If the value is not in that range, then we jump to the default:. Otherwise, we use the index as an
index into a jump table of bytes, and use a BRAF instruction to perform a relative jump.
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If there is a case label more than 127 bytes away from the BRAF, then the jump table expands to contain word offsets, and
the index needs to be doubled before being looked up.

ADD #-1,r4 ; bias by lowest valid value

MoV #4,r3 ; 1s it in the range of our jump table?
CMP/HI r3,r4

BT default ; N: go to default case

MOV.L  #jump_table, r2 ; get address of jump table

MoV r4,reo ; prepare for indexed addressing

ADD re,ro ; convert byte offset to word offset
MOV.W  @(re,r2),re ; r@ = instruction offset for case

BRAF ro ; jump to appropriate handler

NOP ; (nothing in the branch delay slot)

We double the index by adding it to itself (add r@, re). This is where the extra NOP from the previous case comes into
play. The compiler leaves a NOP in its code generation so it can choose the size of the jump table later without having to go
back and recalculate all its offsets.

In theory the compiler could have emitted the jump table directly into the code rather than dropping just the address of the
jump table, which then needs to be indirected through in order to access the actual jump table. That has its drawbacks
though: You have a potentially large jump table in your code, which pushes the jump targets further away and makes it
more likely you're going to need a bigger table. And having the possibility of a variable-sized table means that the
calculation of jump offsets requires multiple passes until all the consequences have stabilized. It's easier for the compiler to
just generate a pointer to a jump table and figure out the jump table later.

| guess in theory if there is more than 64KB of code in the switch statement, the jump table might have to contain longword
offsets, and the NOP becomes a SLL2 to scale the index up so it can access a longword array. I've never seen a function so
large that this became an issue, though.

Next time, we’ll wrap up this whirlwind tour of the SH-3 processor by walking through some actual code.

Raymond Chen
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Once again, we wrap up our processor retrospective series by walking through a simple function from the C runtime library.

extern FILE _iob[];

int fclose(FILE *stream)

{
int result = EOF;
if (stream->_flag & _IOSTRG) {
stream->_flag = 0;
} else {
int index = stream - _iob;
_lock_str(index);
result = _fclose_lk(stream);
_unlock_str(index);
}
return result;
}

Here’s the corresponding disassembly.

; int fclose(FILE *stream)

5
{
mov.l  r8,@-ri15 ; push r8
mov.1l r9,@-ri5 5 push r9
mov.1l ri1o,@-r15 ; push rle
sts.1  pr,@-ri15 ; save return address
add #-16,r15 ; allocate space for outbound calls

We start by saving the nonvolatile registers that we are going to be using as local variables in this function. Next, we
allocate space on the stack to act as home space for our outbound calls. Most function start this way.

mov r4,r9 ; r9 = stream

This function enregisters the stream parameter, so save it from the volatile r4 register into a non-volatile register r9. Other
register variables are going to be r70 for result and r8 for index.

H int result = EOF;
H

H if (stream->_flag & _IOSTRG) {

mov.l  @(12,r9),r3 ; r3 = stream->_flag

mov #64,r2 ; r2 = _IOSTRG

and r2,r3 ; r3 = stream->_flag & _IOSTRG
tst r3,r3 ; is it zero?

bt/s isfile ; Y: so it's a file

mov #-1,r10 ; Set rle = EOF

To test the flag, we load the value into a register (r3), load the constant 0x40 into another register so we can AND them
together and test the result. The TST instruction implicitly tests against zero, so a branch if true means branch if zero. If the
result is indeed zero, then we branch to the string handling case, but not before setting r1e to -1, which initializes the
result variable.
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H stream->_flag = 0;

E }
mov #0,r3 prepare to store zero
bra done and we're done

mov.l r3,@(12,r9) stream->_flag = 0@

(in the branch delay slot)

e ve ue we

If we have a string, then we set _flag to O by loading the constant zero into a register and storing it. Then we jump to the
common exit code.

H } else {
H int index = stream - _iob;
isfile:
mov.l  @(42,pc),r2 ; #0x10004080 ; load constant address of _iob
mov r9,r8 ; r8 = stream
mov #-5,r3 ; prepare to shift right 5 places
sub r2,r8 ; r8 = stream - _iob (byte offset)
shad r3,rs ; index = stream - _iob (element offset)

The FILE structure is a convenient 32 bytes in size, so the byte offset can be converted to an element offset by a simple
shift. There is no right-shift-by-5 instruction, so we have to do a variable shift. There is no right-shift-by-variable instruction,
so we instead do a left shift by the negative, because the left-shift instruction SHAD can shift both left or right, depending on
the sign of the shift amount.

H _lock_str(index);
mov.l  @(36,pc),r3 ; #0x10001040 ; address of _lock_str

jsr @r3 ; call it
mov r8,r4 ; copy parameter from r8 = index

To call the _lock_str function, we put the index parameter in r4 (in the delay slot), load up the address of the function,
and then call it.
B result = _fclose_lk(stream);
mov.l  @(36,pc),r3 ; #0x10002130 ; address of _fclose_lk

jsr @r3 ; call it
mov ro,r4 ; copy parameter from r9 = stream

And another function call. Note that the displacement for the @(36, pc) is the same offset as the previous one, yet it loads a
different value. That's because pc has changed!

H _unlock_str(index);

mov.l  @(32,pc),r3 ; #0x100010c8 ; address of _unlock_str

mov r8,ra ; copy parameter from r8 = index
jsr @r3 ; call it
mov re,rlo ; save return value of _fclose_lk into result

And then call _unlock_str. This time, we also have to save the return value from _fclose_lk so we can return it from the

function.
HE
H return result;
HID
done:
add #16,r15 clean the stack
mov rlo,ro put return value into re register

lds.1  @rl5+,pr pop return address

e e Me bl bl e Gl

mov.l  @rl5+,rle pop ri1e
mov.l  @rl5+,r9 pop r9
rts return to caller
mov.l  @rl5+,r8 pop r8

And we reach the function exit. We put the return value in the r0 register, because that's what the calling convention
dictates. And we undo the stack operations we performed in the function prologue: Clean the stack and pop off the
registers.

But wait, we’re not done yet. We have those constants in the code segment that we need to generate.
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.data.l _iob
.data.l _lock_str
.data.l _fclose_lk
.data.l _unlock_str

When you look at the disassembly, these data bytes are going to be disassembled as if they were code, because the
disassembler doesn’t know that they’re actually data. You just have to understand that nonsense instructions after an
unconditional branch are likely to be data.

Bonus chatter: Here’s my attempt to hand-optimize the assembly.

First observation is that enregistering a variable that is used only once costs the same as spilling it. If you spill it, you write it
to memory once and load it from memory once. If you enregister it, you write the original register to memory once, and
restore it from memory once. Either way, you perform one read and one write. This means that the stream variable may as
well be spilled.

Second observation is that there is really only one interesting live variable across each of the calls. Either we are saving the
index, or saving the result. So we can use the same register to hold both.

And the third observation is that the compiler didn’t take advantage of the free home space.

mov.l r8,@(12,r15) ; save r8 in parameter 4 home space
sts.1  pr,@(8,r15) ; save pr in parameter 3 home space
mov.1l r4,@(4,rl5) ; save stream in parameter 2 home space

| have 16 bytes of free memory, so | use it instead of pushing values onto the stack. | used 12 bytes of my home space, so
need to allocate 12 bytes of stack to get myself back up to 16 bytes of home space for the outbound function calls. I'll
interleave that with the next sequence of instructions to try to avoid a load stall.

mov.l  @(12,r4),r3 r3 = stream->_flag

H
add #-12,r15 ; allocate space for outbound calls
mov #64,r2 ; r2 = _IOSTRG
and r2,r3 ; r3 = stream->_flag & _IOSTRG
tst r3,r3 ; is it zero?
mov #-1,ro0 ; return value is EOF (if it's a string)
bf isstring ; N: so it's a string

The code to test the flag hasn'’t really changed, but | moved the stack pointer adjustment into this sequence to avoid the
stall that occurs when we try to use r3 too soon after loading it from memory. This delay of the stack pointer adjustment is
legal because we are allowed to advance instructions into the prologue provided they are not jumps and do not modify
nonvolatile registers.

There is a stall between the TST and the BF because we are consuming flags immediately after generating them, so | slip a
MOV instruction in there. The value is used only if the branch is taken, but it does no harm in the fallthrough case, and we
may as well try it, since it's a free instruction due to the stall.

H int index = stream - _iob;
H _lock_str(index);
mov.l # iob,r2 ; r2 = address of _iob
mov r4,r8 ; r8 = stream
mov.l  #_lock_str,re ; address of _lock_str
mov #-5,r3 ; prepare to shift right 5 places
sub r2,rs8 ; r8 = stream - _iob (byte offset)
shad r3,r8 ; index = stream - _iob (element offset)
jsr @re ; call _lock_str
mov r8,rd ; copy parameter from r8 = index

The code to calculate the index hasn’t really changed, but | interleave it with the preparation to call _lock_str to avoid a
load stall.

H result = _fclose_lk(stream);
mov.l # fclose_lk,r3 ; address of _fclose_lk

jsr @r3 ; call it
mov @(20,r15),r4 ; parameter 1 is the stream

This is the same as before, except we load the stream from memory because we didn’'t dedicate a register to it. This does

mean that if the _fclose_1lk function tries to access its parameter within its first two instructions, it will suffer a load stall.
(Normally, we’'d have to count four instructions, but there is a one-cycle pipeline bubble on a taken branch, so that sucks up
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two of the instructions.) However, _fclose_1lk is almost certainly going to have at least one register variable, so those first
two instructions are going to be occupied by spilling r8 and pr. The earliest it is likely to access r4 is its third instruction, so

we're safe.
H _unlock_str(index);
mov.l  #_unlock_str,r3 ; address of _unlock_str
mov r8,rd ; copy parameter from r8 = index
jsr @r3 ; call it
mov ro,r8 ; save return value of _fclose_lk into r8

The trick here is that the result variable becomes live at the same moment that index becomes dead, so we can use the
same register r8 for both of them. After the function returns, we put the saved value back into rO so we can return it.

bra done ; to common exit code
mov r8,ro ; put result back into r@ so we can return it

After _unlock_str returns, we go to our common exit code, with the desired return value in r0.

H int result = EOF;
stream->_flag = 0;

isstring:
mov #0,r1 ; value to store into stream->_flag
mov rl,@(12,r4) ; stream->_flag = @
; re is already -1

In the string case, we just zero out the _flag and return -1, which we preloaded into r0 prior to the branch into this code
path. Then we fall through to the common exit code.

done:
lds.1 @(20,r15),pr ; recover return address
add #12,r15 ; clean the stack
rts ; return to caller
5

mov.l @(12,r15),r8 restore r8

And we're done. Our epilogue code is rather brief because we already put the desired return value in the rO register, and

because we didn’t have a lot of saved registers to restore. | put the add after the 1ds.1 because I'm going to stall on the
load delay, so | may as well get a free instruction out of it.
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