#include #include #include // Internal Video RAM uint32_t vram[256]; /* kvram_clear() - Wipe the Video RAM */ void kvram_clear(void) { int i; // The Video RAM is shared between each // process and the kernel, so we should // use atomic operation when we use it. atomic_start(); // Wipe Video RAM // @note: here, we suppose that the VRAM is // 4-aligned i = 256; while (--i >= 0) vram[i] = 0x00000000; // End of atomic operation atomic_end(); } /* kvram_display() - Disaplay Video RAM into screen */ void kvram_display(void) { //TODO: handle screen hadware ! t6k11_display(vram); } /* kvram_scroll() - Scroll up the Video RAM */ void kvram_scroll(int lines) { int i; // The Video RAM is shared between each // process and the kernel, so we should // use atomic operation when we use it. atomic_start(); // Scoll n lines i = 0; while ((i >> 2) < 63 - lines) { vram[i + 0] = vram[i + (lines << 2) + 0]; vram[i + 1] = vram[i + (lines << 2) + 1]; vram[i + 2] = vram[i + (lines << 2) + 2]; vram[i + 3] = vram[i + (lines << 2) + 3]; i = i + 4; } // Clear last n lines while ((i >> 2) < 64) { vram[i + 0] = 0x00000000; vram[i + 1] = 0x00000000; vram[i + 2] = 0x00000000; vram[i + 3] = 0x00000000; i = i + 4; } // End of atomic operation atomic_end(); } /* kvram_reverse() - Reverse Video RAM area */ void kvram_reverse(int x, int y, int width, int height) { int vram_offset_y; int j; // Check error. if (width < 0 || height < 0) return; // Get "real" X position and area width. if (x < 0) { width = width + x; x = 0; } else { if (x + width >= DISPLAY_SCREEN_WIDTH) width = DISPLAY_SCREEN_WIDTH - x; } // Get "real" Y position and area height. if (y < 0) { height = height + x; y = 0; } else { if (y + height >= DISPLAY_SCREEN_HEIGHT) height = DISPLAY_SCREEN_HEIGHT - x; } // Check potential error. // @note we do not check height because the while() // while do the job for us. if (width < 0) return; // Generate VRAM offset for Y axis. // @note: // The screen width size is always 128 and we // use 4-aligned Video RAM so 32 pixels per "slot" // and 128 / 32 = 4. // y * 4 can be optimised by used shift operator, // this is why we use y << 2 because 2^2 = 4. vram_offset_y = (y + height - 1) << 2; // The Video RAM is sheared between each // process and the kernel, so we should // use atomic operation when we use it. atomic_start(); // Reverse area while (--height >= 0) { j = width + x; while (--j >= x) { vram[(j >> 5) + vram_offset_y] ^= 0x80000000 >> (j & 31); } vram_offset_y = vram_offset_y - 4; } // End of atomic operation atomic_end(); } /* kvram_print() - Print string on Video RAM */ void kvram_print(int x, int y, char const *str) { int default_pos_x; int starting_x; int i; // Initialize part i = -1; starting_x = x; x = x * (KERNEL_FONT_REAL_WIDTH + 1); y = y * (KERNEL_FONT_REAL_HEIGHT + 1); default_pos_x = x; // Walk into string and display character by character while (str[++i] != '\0') { // New line if (str[i] == '\n') { y = y + KERNEL_FONT_REAL_HEIGHT + 1; x = default_pos_x; continue; } // Horizontal tab if (str[i] == '\t') { x = x / (KERNEL_FONT_REAL_WIDTH + 1); x = (x + (4 - ((x - starting_x) & 3))) * (KERNEL_FONT_REAL_WIDTH + 1); continue; } // Default, display character font_draw(x, y, str[i]); x = x + KERNEL_FONT_REAL_WIDTH + 1; } } /* kvram_ascii() - Draw ASCII character into Video RAM */ void kvram_ascii(int x, int y, char const c) { font_draw(x, y, c); }