// SPDX-License-Identifier: MIT // Copyright (c) 2021 KikooDX // This file is part of [KBLE](https://sr.ht/~kikoodx/kble), which is // MIT licensed. The MIT license requires this copyright notice to be // included in all copies and substantial portions of the software. //! Level structure, grid containing tile data. const ray = @cImport({ @cInclude("raylib.h"); }); const std = @import("std"); const expect = std.testing.expect; const Vec2 = @import("vec2.zig"); const Rect = @import("rect.zig"); const SelectionUpdate = @import("movement.zig").SelectionUpdate; const Self = @This(); pub const cell_type = u16; width: u16, height: u16, content: []cell_type, selection: []bool, /// Create structure and allocate required memory. The `content` array size will /// be equal to `width` times `height`. pub fn init(allocator: *std.mem.Allocator, width: u16, height: u16) !Self { var self = Self{ .width = width, .height = height, .content = undefined, .selection = undefined, }; // Try to allocate necessary memory. const size: u32 = @intCast(u32, width) * @intCast(u32, height); self.content = try allocator.alloc(cell_type, size); errdefer allocator.free(self.content); self.selection = try allocator.alloc(bool, size); // Fill with default value to avoid undefined behavior. var i: u32 = 0; while (i < size) : (i += 1) { self.content[i] = 0; self.selection[i] = false; } return self; } /// Load level content from given absolute path. Expect the KBLE file format (see /// `kbleformat.md` for more details. pub fn init_load(allocator: *std.mem.Allocator, kble_file_path: []const u8) !Self { var self = Self{ .width = undefined, .height = undefined, .content = undefined, .selection = undefined, }; // Open directory. var dir: std.fs.Dir = std.fs.cwd(); // Open file in read mode. const file: std.fs.File = try dir.openFile(kble_file_path, std.fs.File.OpenFlags{ .read = true, .write = false, }); defer file.close(); return self; } /// Free the level content. pub fn deinit(self: *Self, allocator: *std.mem.Allocator) void { allocator.free(self.selection); allocator.free(self.content); } /// Draw level tiles from `offset` to fill the window. pub fn draw(self: *Self, scale: u16, offset: Vec2) void { // Pixel position (were we draw). var x: Vec2.int_type = 0; var y: Vec2.int_type = 0; // Cursor position. var cx: Vec2.int_type = offset.x; while (cx < self.width) { var cy: Vec2.int_type = offset.y; while (cy < self.height) { const cell_content: cell_type = self.content[cy * self.width + cx]; const color = switch (cell_content) { 0 => ray.Color{ .r = 26, .g = 26, .b = 26, .a = 255 }, 1 => ray.Color{ .r = 144, .g = 144, .b = 144, .a = 255 }, else => ray.PURPLE, //unknown }; ray.DrawRectangle(x + 1, y + 1, scale - 2, scale - 2, color); y += scale; cy += 1; } y = 0; x += scale; cx += 1; } } /// Draw selection from `offset` to fill the window. pub fn draw_selection(self: *Self, scale: u16, offset: Vec2) void { // Pixel position (were we draw). var x: Vec2.int_type = 0; var y: Vec2.int_type = 0; // Cursor position. var cx: Vec2.int_type = offset.x; while (cx < self.width) { var cy: Vec2.int_type = offset.y; while (cy < self.height) { if (self.selection[cy * self.width + cx]) ray.DrawRectangleLines(x, y, scale, scale, ray.WHITE); y += scale; cy += 1; } y = 0; x += scale; cx += 1; } } /// Set the `state` of a cell at `cursor` if possible pub fn select_cell(self: *Self, cursor: Vec2, state: bool) void { const target: u32 = @intCast(u32, cursor.y) * self.width + @intCast(u32, cursor.x); if (cursor.x < self.width and cursor.y < self.height and target < self.width * self.height and target >= 0) { self.selection[target] = state; } } /// Reset state of selection: `state` everywhere. fn select_clear(self: *Self, state: bool) void { const size: u32 = @intCast(u32, self.width) * @intCast(u32, self.height); var i: u32 = 0; while (i < size) : (i += 1) { self.selection[i] = state; } } /// Change state of all the cells in the rectangle range. pub fn select_rect(self: *Self, rect: Rect, state: bool) void { var cx: Rect.int_type = rect.left_x; while (cx <= rect.right_x) { defer cx += 1; var cy = rect.top_y; while (cy <= rect.bottom_y) { defer cy += 1; self.select_cell(Vec2{ .x = cx, .y = cy }, state); } } } /// Apply selection update to selection *kof*. pub fn apply_selection_update(self: *Self, selection_update: SelectionUpdate) void { // Apply changes. self.select_rect(selection_update.area, selection_update.state); } test "create level buffer" { // Create allocator. var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer arena.deinit(); const allocator = &arena.allocator; // Initialize level struct and allocate space (twice 'cause why not?). var level: Self = try Self.init(allocator, 64, 32); level.deinit(allocator); level = try Self.init(allocator, 256, 256); defer level.deinit(allocator); level.content[128] = 32; level.selection[128] = true; expect(level.width == 256); expect(level.height == 256); expect(level.content[128] == 32); expect(level.selection[128]); } test "clear selection" { var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer arena.deinit(); const allocator = &arena.allocator; var level: Self = try Self.init(allocator, 16, 16); defer level.deinit(allocator); level.selection[255] = true; level.select_clear(false); expect(!level.selection[255]); } test "select rectangle area" { var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer arena.deinit(); const allocator = &arena.allocator; var level: Self = try Self.init(allocator, 16, 16); defer level.deinit(allocator); level.select_rect(Rect{ .left_x = 4, .right_x = 20, .top_y = 1, .bottom_y = 14, }, true); expect(!level.selection[14]); expect(!level.selection[19]); expect(level.selection[20]); expect(level.selection[31]); expect(!level.selection[245]); } test "load level from existing file" { var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer arena.deinit(); const allocator = &arena.allocator; var level: Self = try Self.init_load(allocator, "sample.kble"); //defer level.deinit(allocator); }